134 resultados para ecosystem functioning
Resumo:
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding-and in management decisions-about how biodiversity is related to the provision of multiple ecosystem services.
Resumo:
OBJECTIVE Self-rated attenuated psychotic-like experiences (APLEs) are increasingly used to screen for ultra-high-risk (UHR) across all ages. However, self-rated psychotic-like experiences (PLEs), in particular perception-related ones, were more frequent in children and adolescents, in which they possessed less clinical significance. We therefore explored the prevalence of different factors of APLEs in help-seeking adolescents, and their relationship with age, functioning and psychopathology METHOD As a part of the "Liberiamo il Futuro" project, help-seeking adolescents (N=171; 11-18years, 53% male) were screened with the 92-item Prodromal Questionnaire (PQ-92). A factor analysis was performed on the PQ-92 positive items (i.e., APLEs) to identify different APLE-factors. These were assessed for their association with age, functioning and psychopathology using regression analyses. RESULTS APLEs were very common in help-seeking adolescents, and formed four factors: "Conceptual Disorganization and Suspiciousness", "Perceptual Abnormalities", "Bizarre Experiences", and "Magical Ideation". Associations with age and functioning but not psychopathology were found for "Perceptual Abnormalities" that was significantly more severe in 11-12-year-olds, while "Conceptual Disorganization and Suspiciousness" was significantly related to psychopathology. CONCLUSION In line with findings on PLEs, prevalence and clinical significance of APLEs, especially perception-related ones, might depend on age and thus neurodevelopmental stage, and may fall within the normal spectrum of experience during childhood. This should be considered when screening for UHR status in younger age groups
Resumo:
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and −30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and −39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha−1 year−1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Resumo:
Background: Disturbed interpersonal communication is a core problem in schizophrenia. Patients with schizophrenia often appear disconnected and "out of sync" when interacting with others. This may involve perception, cognition, motor behavior, and nonverbal expressiveness. Although well-known from clinical observation, mainstream research has neglected this area. Corresponding theoretical concepts, statistical methods, and assessment were missing. In recent research, however, it has been shown that objective, video-based measures of nonverbal behavior can be used to reliably quantify nonverbal behavior in schizophrenia. Newly developed algorithms allow for a calculation of movement synchrony. We found that the objective amount of movement of patients with schizophrenia during social interactions was closely related to the symptom profiles of these patients (Kupper et al., 2010). In addition and above the mere amount of movement, the degree of synchrony between patients and healthy interactants may be indicative of various problems in the domain of interpersonal communication and social cognition. Methods: Based on our earlier study, head movement synchrony was assessed objectively (using Motion Energy Analysis, MEA) in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia. Results: Lower head movement synchrony was indicative of symptoms (negative symptoms, but also of conceptual disorganization and lack of insight), verbal memory, patients’ self-evaluation of competence, and social functioning. Many of these relationships remained significant even when corrected for the amount of movement of the patients. Conclusion: The results suggest that nonverbal synchrony may be an objective and sensitive indicator of the severity of symptoms, cognition and social functioning.
Resumo:
Changes in fire occurrence during the last decades in the southern Swiss Alps make knowledge on fire history essential to understand future evolution of the ecosystem composition and functioning. In this context, palaeoecology provides useful insights into processes operating at decadal-to-millennial time scales, such as the response of plant communities to intensified fire disturbances during periods of cultural change. We provide a high-resolution macroscopic charcoal and pollen series from Guèr, a well-dated peat sequence at mid-elevation (832 m.a.s.l.) in southern Switzerland, where the presence of local settlements is documented since the late Bronze Age and the Iron Age. Quantitative fire reconstruction shows that fire activity sharply increased from the Neolithic period (1–3 episodes/1000 year) to the late Bronze and Iron Age (7–9 episodes/1000 year), leading to extensive clearance of the former mixed deciduous forest (Alnus glutinosa, Betula, deciduous Quercus). The increase in anthropogenic pollen indicators (e.g. Cerealia-type, Plantago lanceolata) together with macroscopic charcoal suggests anthropogenic rather than climatic forcing as the main cause of the observed vegetation shift. Fire and controlled burning were extensively used during the late Roman Times and early Middle Ages to promote the introduction and establishment of chestnut (Castanea sativa) stands, which provided an important wood and food supply. Fire occurrence declined markedly (from 9 to 5–6 episodes/1000 year) during late Middle Ages because of fire suppression, biomass removal by human population, and landscape fragmentation. Land-abandonment during the last decades allowed forest to partly re-expand (mainly Alnus glutinosa, Betula) and fire frequency to increase.
Resumo:
Since the origin of early Homo species during the Late Pliocene, interactions of humans with scavenging birds and mammals have changed in form through shifting ecological scenarios. How humans procured meat during the Quaternary Period changed from confrontational scavenging to hunting; shepherding of wild animals; and, eventually, intensive husbandry of domesticated animals. As humans evolved from carcass consumers to carcass providers, the overall relationship between humans and scavengers shifted from competition to facilitation. These changing interactions have translated into shifting provisioning (by signaling carcass location), regulating (e.g., by removing animal debris and controlling infectious diseases), and cultural ecosystem services (e.g., by favoring human language and social cooperation skills or, more recently, by enhancing ecotourism) provided by scavenging vertebrates. The continued survival of vultures and large mammalian scavengers alongside humans is now severely in jeopardy, threatening the loss of the numerous ecosystem services from which contemporary and future humans could benefit.
Resumo:
Software developers are often unsure of the exact name of the method they need to use to invoke the desired behavior in a given context. This results in a process of searching for the correct method name in documentation, which can be lengthy and distracting to the developer. We can decrease the method search time by enhancing the documentation of a class with the most frequently used methods. Usage frequency data for methods is gathered by analyzing other projects from the same ecosystem - written in the same language and sharing dependencies. We implemented a proof of concept of the approach for Pharo Smalltalk and Java. In Pharo Smalltalk, methods are commonly searched for using a code browser tool called "Nautilus", and in Java using a web browser displaying HTML based documentation - Javadoc. We developed plugins for both browsers and gathered method usage data from open source projects, in order to increase developer productivity by reducing method search time. A small initial evaluation has been conducted showing promising results in improving developer productivity.
Resumo:
Dynamically typed languages lack information about the types of variables in the source code. Developers care about this information as it supports program comprehension. Ba- sic type inference techniques are helpful, but may yield many false positives or negatives. We propose to mine information from the software ecosys- tem on how frequently given types are inferred unambigu- ously to improve the quality of type inference for a single system. This paper presents an approach to augment existing type inference techniques by supplementing the informa- tion available in the source code of a project with data from other projects written in the same language. For all available projects, we track how often messages are sent to instance variables throughout the source code. Predictions for the type of a variable are made based on the messages sent to it. The evaluation of a proof-of-concept prototype shows that this approach works well for types that are sufficiently popular, like those from the standard librarie, and tends to create false positives for unpopular or domain specific types. The false positives are, in most cases, fairly easily identifiable. Also, the evaluation data shows a substantial increase in the number of correctly inferred types when compared to the non-augmented type inference.
Resumo:
– Swiss forests experience strong impacts under the CH2011 scenarios, partly even for the low greenhouse gas scenario RCP3PD. Negative impacts prevail in low-elevation forests, whereas mostly positive impacts are expected in high-elevation forests. – Major changes in the distribution of the two most important tree species, Norway spruce and European beech, are expected. Growth conditions for spruce improve in a broad range of scenarios at presently cool high-elevation sites with plentiful precipitation, but in the case of strong warming (A1B and A2) spruce and beech are at risk in large parts of the Swiss Plateau. – High elevation forests that are temperature-limited will show little change in species composition but an increase in biomass. In contrast, forests at low elevations in warm-dry inner-Alpine valleys are sensitive to even moderate warming and may no longer sustain current biomass and species. – Timber production potential, carbon storage, and protection from avalanches and rockfall react differently to climate change, with an overall tendency to deteriorate at low elevations, and improve at high elevations. – Climate change will affect forests also indirectly, e.g., by increasing the risk of infestation by spruce bark beetles, which will profit from an extended flight period and will produce more generations per year.
Resumo:
East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales.