119 resultados para echo-hiding
Resumo:
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.
Resumo:
OBJECTIVE To determine whether myocardial contrast echocardiography can be used to quantify collateral derived myocardial flow in humans. METHODS In 25 patients undergoing coronary angioplasty, a collateral flow index (CFI) was determined using intracoronary wedge pressure distal to the stenosis to be dilated, with simultaneous mean aortic pressure measurements. During balloon occlusion, echo contrast was injected into both main coronary arteries simultaneously. Echocardiography of the collateral receiving myocardial area was performed. The time course of myocardial contrast enhancement in images acquired at end diastole was quantified by measuring pixel intensities (256 grey units) within a region of interest. Perfusion variables, such as background subtracted peak pixel intensity and contrast transit rate, were obtained from a fitted gamma variate curve. RESULTS 16 patients had a left anterior descending coronary artery stenosis, four had a left circumflex coronary artery stenosis, and five had a right coronary artery stenosis. The mean (SD) CFI was 19 (12)% (range 0-47%). Mean contrast transit rate was 11 (8) seconds. In 17 patients, a significant collateral contrast effect was observed (defined as peak pixel intensity more than the mean + 2 SD of background). Peak pixel intensity was linearly related to CFI in patients with a significant contrast effect (p = 0.002, r = 0.69) as well as in all patients (p = 0.0003, r = 0.66). CONCLUSIONS Collateral derived perfusion of myocardial areas at risk can be demonstrated using intracoronary echo contrast injections. The peak echo contrast effect is directly related to the magnitude of collateral flow.
Resumo:
Alexander von Humboldt (1769–1859) was a world traveler, bestselling writer, and versatile researcher, a European salon sensation, and global celebrity. Yet the enormous literary echo he generated has remained largely unexplored. Humboldt inspired generations of authors, from Goethe and Byron to Enzensberger and García Márquez, to reflect on cultural difference, colonial ideology, and the relation between aesthetics and science. This collection of one-hundred texts features tales of adventure, travel reports, novellas, memoirs, letters, poetry, drama, screenplays, and even comics—many for the first time in English. The selection covers the foundational myths and magical realism of Latin America, the intellectual independence of Emerson, Thoreau, Poe, and Whitman in the United States, discourses in Imperial, Weimar, Nazi, East, and West Germany, as well as recent films and fiction. This documented source book addresses scholars in cultural and postcolonial studies as well as readers in history and comparative literature.
Resumo:
Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.
Resumo:
A common form of social regulation of an individual’s health behavior is social control. The contextual model of social control assumes that higher relationship quality goes along with more beneficial effects of social control on health behavior. This study examined potential differential moderating effects of different dimensions of relationship quality on the associations between positive and negative social control and smoking behavior and hiding smoking. The sample consisted of 144 smokers (n = 72 women; mean age = 31.78, SD = 10.04) with a nonsmoking partner. Positive and negative social control, dimensions of relationship quality consensus, cohesion and satisfaction, numbers of cigarettes smoked (NCS), hiding smoking (HS), and control variables were assessed at baseline. Four weeks later NCS and HS were assessed again. Only for smokers with high consensus, but not cohesion and satisfaction, a negative association between positive control and NCS emerged. Moreover, smokers with high consensus tended to report more HS when being positively and negatively socially controlled. This also emerged for cohesion and positive control. Satisfaction with the relationship did not display any interaction effects. This study’s results emphasize the importance of differentiating not only between positive and negative social control but also between different dimensions of relationship quality in order to gain a comprehensive understanding of the dynamics in romantic dyads with regard to social regulation of behavioral change.
Resumo:
Short-echo-time magnetic resonance spectra of human brain contain broad contributions from macromolecules. As they are a priori of unknown shape and intensity, they pose a problem if one wants to quantitate the overlying spectral features from low-molecular-weight metabolites. On the other hand, the macromolecular contributions may provide relevant clinical information themselves, if properly evaluated. Several methods, based on T(1), T(2), or spectral shape, have previously been suggested to suppress or edit the macromolecule contributions. Here, a method is presented based on a series of saturation recovery scans and that allows for simultaneous recording of the macromolecular baseline and the fully relaxed metabolite spectrum. In comparison to an inversion recovery technique aimed at nulling signals from long-T(1) components, the saturation recovery method is less susceptible to T(1) differences inherent in signals from different metabolites or introduced by pathology. The saturation recovery method was used to quantitate the macromolecular baseline in white and/or gray matter locations of the human brain in 40 subjects. It was found that the content and composition of MR visible macromolecules depends on cerebral location, as well as the age of the investigated subject, while no gender dependence could be found.
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
Hydroakustische Methoden werden oft zur Vermessung von archäologischen Fundstellen und zur Objektsuche in der Flachwasserzone von Seen und Flüssen eingesetzt. In diesem Beitrag werden die technischen Grundlagen hydroakustischer Messverfahren erläutert und eine kurze Beschreibung üblicherweise eingesetzter Mess- geräte gegeben. Anschließend zeigen wir Beispiele von Vermessungen mit unterschiedlichen Singlebeam-Echo- loten, Multibeam-Echoloten, einem Sidescan-Sonar und einem Interferometrischen Sonar. Mit den Arbeiten aus dem Bodensee, Zürichsee und dem Vierwaldstättersee werden die Möglichkeiten und Grenzen der Hydroakus- tik in der Binnengewässerarchäologie erläutert.
Resumo:
AIM: To determine the feasibility of evaluating surgically induced hepatocyte damage using gadoxetate disodium (Gd-EOB-DTPA) as a marker for viable hepatocytes at magnetic resonance imaging (MRI) after liver resection. MATERIAL AND METHODS: Fifteen patients were prospectively enrolled in this institutional review board-approved study prior to elective liver resection after informed consent. Three Tesla MRI was performed 3-7 days after surgery. Three-dimensional (3D) T1-weighted (W) volumetric interpolated breath-hold gradient echo (VIBE) sequences covering the liver were acquired before and 20 min after Gd-EOB-DTPA administration. The signal-to-noise ratio (SNR) was used to compare the uptake of Gd-EOB-DTPA in healthy liver tissue and in liver tissue adjacent to the resection border applying paired Student's t-test. Correlations with potential influencing factors (blood loss, duration of intervention, age, pre-existing liver diseases, postoperative change of resection surface) were calculated using Pearson's correlation coefficient. RESULTS: Before Gd-EOB-DTPA administration the SNR did not differ significantly (p = 0.052) between healthy liver tissue adjacent to untouched liver borders [59.55 ± 25.46 (SD)] and the liver tissue compartment close to the resection surface (63.31 ± 27.24). During the hepatocyte-specific phase, the surgical site showed a significantly (p = 0.04) lower SNR (69.44 ± 24.23) compared to the healthy site (78.45 ± 27.71). Dynamic analyses revealed a significantly lower increase (p = 0.008) in signal intensity in the healthy tissue compared to the resection border compartment. CONCLUSION: EOB-DTPA-enhanced MRI may have the potential to be an effective non-invasive tool for detecting hepatocyte damage after liver resection.
Resumo:
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.
Resumo:
For clinical optoacoustic imaging, linear probes are preferably used because they allow versatile imaging of the human body with real-time display and free-hand probe guidance. The two-dimensional (2-D) optoacoustic image obtained with this type of probe is generally interpreted as a 2-D cross-section of the tissue just as is common in echo ultrasound. We demonstrate in three-dimensional simulations, phantom experiments, and in vivo mouse experiments that for vascular imaging this interpretation is often inaccurate. The cylindrical blood vessels emit anisotropic acoustic transients, which can be sensitively detected only if the direction of acoustic radiation coincides with the probe aperture. Our results reveal for this reason that the signal amplitude of different blood vessels may differ even if the vessels have the same diameter and initial pressure distribution but different orientation relative to the imaging plane. This has important implications for the image interpretation, for the probe guidance technique, and especially in cases when a quantitative reconstruction of the optical tissue properties is required.
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.