94 resultados para cross sections
Resumo:
Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±, K±, p, K0s and Λ are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.
Resumo:
Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.
Resumo:
The aim of analogue model experiments in geology is to simulate structures in nature under specific imposed boundary conditions using materials whose rheological properties are similar to those of rocks in nature. In the late 1980s, X-ray computed tomography (CT) was first applied to the analysis of such models. In early studies only a limited number of cross-sectional slices could be recorded because of the time involved in CT data acquisition, the long cooling periods for the X-ray source and computational capacity. Technological improvements presently allow an almost unlimited number of closely spaced serial cross-sections to be acquired and calculated. Computer visualization software allows a full 3D analysis of every recorded stage. Such analyses are especially valuable when trying to understand complex geological structures, commonly with lateral changes in 3D geometry. Periodic acquisition of volumetric data sets in the course of the experiment makes it possible to carry out a 4D analysis of the model, i.e. 3D analysis through time. Examples are shown of 4D analysis of analogue models that tested the influence of lateral rheological changes on the structures obtained in contractional and extensional settings.
Resumo:
The capacity of trees to recover from mechanical disturbance is of crucial importance for tree survival but has been primarily investigated in saplings using artificially induced wounds. In this study, mature Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees growing on alpine slopes that were wounded by naturally occurring rockfall were analyzed to determine their efficiency in overgrowing wounds. In total 43 L. decidua, P. abies and A. alba trees were sampled. First, 106 samples from 27 L. decidua and P. abies trees were analyzed to reconstruct yearly and overall overgrowth rates. Cross sections were taken at the maximum extension of the injury and overgrowth rates were determined on a yearly basis. Results clearly showed that L. decidua overgrew wounds more efficiently than P. abies with an average overgrowth rate of 19° and 11.8° per year, respectively. The higher on the stem the injury was located, the faster the wound was closed. Young and small trees overgrew wounds more efficiently than older or thicker trees. In contrast, no correlation was observed between injury size or increment before/after wounding and wound closure. Second, cross sections from 16 L. decidua, P. abies and A. alba (54 injuries) were used to assess closure rates at different heights around the injury. Overgrowth was generally smallest at the height of the maximum lateral extension of the injury and increased at the upper and lower end of the injury. The efficiency with which L. decidua closes wounds inflicted by rockfall makes this species highly adapted to sites with this type of mechanical disturbance.