205 resultados para computer-assisted lelarning
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.
Resumo:
Locally affine (polyaffine) image registration methods capture intersubject non-linear deformations with a low number of parameters, while providing an intuitive interpretation for clinicians. Considering the mandible bone, anatomical shape differences can be found at different scales, e.g. left or right side, teeth, etc. Classically, sequential coarse to fine registration are used to handle multiscale deformations, instead we propose a simultaneous optimization of all scales. To avoid local minima we incorporate a prior on the polyaffine transformations. This kind of groupwise registration approach is natural in a polyaffine context, if we assume one configuration of regions that describes an entire group of images, with varying transformations for each region. In this paper, we reformulate polyaffine deformations in a generative statistical model, which enables us to incorporate deformation statistics as a prior in a Bayesian setting. We find optimal transformations by optimizing the maximum a posteriori probability. We assume that the polyaffine transformations follow a normal distribution with mean and concentration matrix. Parameters of the prior are estimated from an initial coarse to fine registration. Knowing the region structure, we develop a blockwise pseudoinverse to obtain the concentration matrix. To our knowledge, we are the first to introduce simultaneous multiscale optimization through groupwise polyaffine registration. We show results on 42 mandible CT images.
Resumo:
Background: Resonance frequency analysis (RFA) is a noninvasive technique for the quantitative assessment of implant stability. Information on the implant stability quotient (ISQ) of transmucosally inserted implants is limited. Purpose: The aim of this investigation was to compare the ISQ of conventionally inserted implants by raising a muco-periostal flap with implants inserted using a flapless procedure. Materials and Methods: Forty elderly patients with complete edentulous maxilla were consecutively admitted for treatment with implant-supported prostheses. A computer tomography was obtained for the computer-assisted implant planning. One hundred ten implants were placed conventionally in 23 patients (flap-group) and 85 implants in 17 patients by means of the flapless method (flapless-group) using a stereolithographic template. RFA measurements were performed after implant placement (baseline) and after a healing time of 12 weeks (reentry). Results: All implants exhibited clinically and radiographically successful osseointegration. Bone level did not change significantly neither for genders nor type of surgical protocol. Mean ISQ values of the flapless-group were significantly higher at baseline (p < .001) and at reentry (p < .001) compared with the flap-group. The ISQ values were significantly lower at reentry compared with baseline for the flap-group (p = .028) but not for the flapless-group. This group showed a moderate, but insignificant increase. RFA measurements of males resulted in ISQ values that were thoroughly higher as compared with females at both time-points in both groups. Correlation between RFA and bone level was not found. Conclusions: The flapless procedure showed favorable conditions with regard to implant stability and crestal bone level. Some changes of the ISQ values that represent primary (mechanical) and secondary (bone remodeling) implant stability were observed in slight favor of the flapless method and male patients. In properly planned and well-selected cases, the minimal invasive transmucosal technique using a drill-guide is a safe procedure.
Resumo:
Presenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.
Resumo:
With improvements in acquisition speed and quality, the amount of medical image data to be screened by clinicians is starting to become challenging in the daily clinical practice. To quickly visualize and find abnormalities in medical images, we propose a new method combining segmentation algorithms with statistical shape models. A statistical shape model built from a healthy population will have a close fit in healthy regions. The model will however not fit to morphological abnormalities often present in the areas of pathologies. Using the residual fitting error of the statistical shape model, pathologies can be visualized very quickly. This idea is applied to finding drusen in the retinal pigment epithelium (RPE) of optical coherence tomography (OCT) volumes. A segmentation technique able to accurately segment drusen in patients with age-related macular degeneration (AMD) is applied. The segmentation is then analyzed with a statistical shape model to visualize potentially pathological areas. An extensive evaluation is performed to validate the segmentation algorithm, as well as the quality and sensitivity of the hinting system. Most of the drusen with a height of 85.5 microm were detected, and all drusen at least 93.6 microm high were detected.
Resumo:
The aim of this study was to validate the accuracy and reproducibility of a statistical shape model-based 2D/3D reconstruction method for determining cup orientation after total hip arthroplasty. With a statistical shape model, this method allows reconstructing a patient-specific 3D-model of the pelvis from a standard AP X-ray radiograph. Cup orientation (inclination and anteversion) is then calculated with respect to the anterior pelvic plane that is derived from the reconstructed model.
Resumo:
Cranioplasty is a common neurosurgical procedure. Free-hand molding of polymethyl methacrylate (PMMA) cement into complex three-dimensional shapes is often time-consuming and may result in disappointing cosmetic outcomes. Computer-assisted patient-specific implants address these disadvantages but are associated with long production times and high costs. In this study, we evaluated the clinical, radiological, and cosmetic outcomes of a time-saving and inexpensive intraoperative method to mold custom-made implants for immediate single-stage or delayed cranioplasty. Data were collected from patients in whom cranioplasty became necessary after removal of bone flaps affected by intracranial infection, tumor invasion, or trauma. A PMMA replica was cast between a negative form of the patient's own bone flap and the original bone flap with exactly the same shape, thickness, and dimensions. Clinical and radiological follow-up was performed 2 months post-surgery. Patient satisfaction (Odom criteria) and cosmesis (visual analogue scale for cosmesis) were evaluated 1 to 3 years after cranioplasty. Twenty-seven patients underwent intraoperative template-molded patient-specific cranioplasty with PMMA. The indications for cranioplasty included bone flap infection (56%, n = 15), calvarian tumor resection (37%, n = 10), and defect after trauma (7%, n = 2). The mean duration of the molding procedure was 19 ± 7 min. Excellent radiological implant alignment was achieved in 94% of the cases. All (n = 23) but one patient rated the cosmetic outcome (mean 1.4 years after cranioplasty) as excellent (70%, n = 16) or good (26%, n = 6). Intraoperative cast-molded reconstructive cranioplasty is a feasible, accurate, fast, and cost-efficient technique that results in excellent cosmetic outcomes, even with large and complex skull defects.
Resumo:
Limitations associated with the visual information provided to surgeons during laparoscopic surgery increases the difficulty of procedures and thus, reduces clinical indications and increases training time. This work presents a novel augmented reality visualization approach that aims to improve visual data supplied for the targeting of non visible anatomical structures in laparoscopic visceral surgery. The approach aims to facilitate the localisation of hidden structures with minimal damage to surrounding structures and with minimal training requirements. The proposed augmented reality visualization approach incorporates endoscopic images overlaid with virtual 3D models of underlying critical structures in addition to targeting and depth information pertaining to targeted structures. Image overlay was achieved through the implementation of camera calibration techniques and integration of the optically tracked endoscope into an existing image guidance system for liver surgery. The approach was validated in accuracy, clinical integration and targeting experiments. Accuracy of the overlay was found to have a mean value of 3.5 mm ± 1.9 mm and 92.7% of targets within a liver phantom were successfully located laparoscopically by non trained subjects using the approach.