104 resultados para computer science visualization usability human interaction ux open data geographical
Resumo:
Architectural decisions can be interpreted as structural and behavioral constraints that must be enforced in order to guarantee overarching qualities in a system. Enforcing those constraints in a fully automated way is often challenging and not well supported by current tools. Current approaches for checking architecture conformance either lack in usability or offer poor options for adaptation. To overcome this problem we analyze the current state of practice and propose an approach based on an extensible, declarative and empirically-grounded specification language. This solution aims at reducing the overall cost of setting up and maintaining an architectural conformance monitoring environment by decoupling the conceptual representation of a user-defined rule from its technical specification prescribed by the underlying analysis tools. By using a declarative language, we are able to write tool-agnostic rules that are simple enough to be understood by untrained stakeholders and, at the same time, can be can be automatically processed by a conformance checking validator. Besides addressing the issue of cost, we also investigate opportunities for increasing the value of conformance checking results by assisting the user towards the full alignment of the implementation with respect to its architecture. In particular, we show the benefits of providing actionable results by introducing a technique which automatically selects the optimal repairing solutions by means of simulation and profit-based quantification. We perform various case studies to show how our approach can be successfully adopted to support truly diverse industrial projects. We also investigate the dynamics involved in choosing and adopting a new automated conformance checking solution within an industrial context. Our approach reduces the cost of conformance checking by avoiding the need for an explicit management of the involved validation tools. The user can define rules using a convenient high-level DSL which automatically adapts to emerging analysis requirements. Increased usability and modular customization ensure lower costs and a shorter feedback loop.
Resumo:
This paper presents a conceptual approach to enhance knowledge management by synchronizing mind maps and fuzzy cognitive maps. The use of mind maps allows taking advantage of human creativity, while the application of fuzzy cognitive maps enables to store information expressed in natural language. By applying cognitive computing, it makes possible to gather and extract relevant information out of a data pool. Therefore, this approach is supposed to give a framework that enhances knowledge management. To demonstrate the potential of this framework, a use case concerning the development of a smart city app is presented.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
Resumo:
Previous studies on issue tracking systems for open source software (OSS) focused mainly on requests for bug fixes. However, requests to add a new feature or an improvement to an OSS project are often also made in an issue tracking system. These inquiries are particularly important because they determine the further development of the software. This study examines if there is any difference between requests of the IBM developer community and other sources in terms of the likelihood of successful implementation. Our study consists of a case study of the issue tracking system BugZilla in the Eclipse integrated development environment (IDE). Our hypothesis, which was that feature requests from outsiders have less chances of being implemented, than feature requests from IBM developers, was confirmed.
Resumo:
The goal of the present thesis was to investigate the production of code-switched utterances in bilinguals’ speech production. This study investigates the availability of grammatical-category information during bilingual language processing. The specific aim is to examine the processes involved in the production of Persian-English bilingual compound verbs (BCVs). A bilingual compound verb is formed when the nominal constituent of a compound verb is replaced by an item from the other language. In the present cases of BCVs the nominal constituents are replaced by a verb from the other language. The main question addressed is how a lexical element corresponding to a verb node can be placed in a slot that corresponds to a noun lemma. This study also investigates how the production of BCVs might be captured within a model of BCVs and how such a model may be integrated within incremental network models of speech production. In the present study, both naturalistic and experimental data were used to investigate the processes involved in the production of BCVs. In the first part of the present study, I collected 2298 minutes of a popular Iranian TV program and found 962 code-switched utterances. In 83 (8%) of the switched cases, insertions occurred within the Persian compound verb structure, hence, resulting in BCVs. As to the second part of my work, a picture-word interference experiment was conducted. This study addressed whether in the case of the production of Persian-English BCVs, English verbs compete with the corresponding Persian compound verbs as a whole, or whether English verbs compete with the nominal constituents of Persian compound verbs only. Persian-English bilinguals named pictures depicting actions in 4 conditions in Persian (L1). In condition 1, participants named pictures of action using the whole Persian compound verb in the context of its English equivalent distractor verb. In condition 2, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically closely related English distractor verb. In condition 3, the whole Persian compound verb was produced in the context of a semantically unrelated English distractor verb. In condition 4, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically unrelated English distractor verb. The main effect of linguistic unit was significant by participants and items. Naming latencies were longer in the nominal linguistic unit compared to the compound verb (CV) linguistic unit. That is, participants were slower to produce the nominal constituent of compound verbs in the context of a semantically closely related English distractor verb compared to producing the whole compound verbs in the context of a semantically closely related English distractor verb. The three-way interaction between version of the experiment (CV and nominal versions), linguistic unit (nominal and CV linguistic units), and relation (semantically related and unrelated distractor words) was significant by participants. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to the response latencies in the semantically related CV linguistic unit. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to response latencies in the semantically unrelated nominal linguistic unit. Both the analysis of the naturalistic data and the results of the experiment revealed that in the case of the production of the nominal constituent of BCVs, a verb from the other language may compete with a noun from the base language, suggesting that grammatical category does not necessarily provide a constraint on lexical access during the production of the nominal constituent of BCVs. There was a minimal context in condition 2 (the nominal linguistic unit) in which the nominal constituent was produced in the presence of its corresponding light verb. The results suggest that generating words within a context may not guarantee that the effect of grammatical class becomes available. A model is proposed in order to characterize the processes involved in the production of BCVs. Implications for models of bilingual language production are discussed.
Resumo:
Analyzing how software engineers use the Integrated Development Environment (IDE) is essential to better understanding how engineers carry out their daily tasks. Spotter is a code search engine for the Pharo programming language. Since its inception, Spotter has been rapidly and broadly adopted within the Pharo community. However, little is known about how practitioners employ Spotter to search and navigate within the Pharo code base. This paper evaluates how software engineers use Spotter in practice. To achieve this, we remotely gather user actions called events. These events are then visually rendered using an adequate navigation tool chain. Sequences of events are represented using a visual alphabet. We found a number of usage patterns and identified underused Spotter features. Such findings are essential for improving Spotter.
Resumo:
Architectural decisions are often encoded in the form of constraints and guidelines. Non-functional requirements can be ensured by checking the conformance of the implementation against this kind of invariant. Conformance checking is often a costly and error-prone process that involves the use of multiple tools, differing in effectiveness, complexity and scope of applicability. To reduce the overall effort entailed by this activity, we propose a novel approach that supports verification of human- readable declarative rules through the use of adapted off-the-shelf tools. Our approach consists of a rule specification DSL, called Dicto, and a tool coordination framework, called Probo. The approach has been implemented in a soon to be evaluated prototype.
Resumo:
Understanding the run-time behavior of software systems can be a challenging activity. Debuggers are an essential category of tools used for this purpose as they give developers direct access to the running systems. Nevertheless, traditional debuggers rely on generic mechanisms to introspect and interact with the running systems, while developers reason about and formulate domain-specific questions using concepts and abstractions from their application domains. This mismatch creates an abstraction gap between the debugging needs and the debugging support leading to an inefficient and error-prone debugging effort, as developers need to recover concrete domain concepts using generic mechanisms. To reduce this gap, and increase the efficiency of the debugging process, we propose a framework for developing domain-specific debuggers, called the Moldable Debugger, that enables debugging at the level of the application domain. The Moldable Debugger is adapted to a domain by creating and combining domain-specific debugging operations with domain-specific debugging views, and adapts itself to a domain by selecting, at run time, appropriate debugging operations and views. To ensure the proposed model has practical applicability (i.e., can be used in practice to build real debuggers), we discuss, from both a performance and usability point of view, three implementation strategies. We further motivate the need for domain-specific debugging, identify a set of key requirements and show how our approach improves debugging by adapting the debugger to several domains.
Resumo:
Developers commonly ask detailed and domain-specific questions about the software systems they are developing and maintaining. Integrated development environments (IDEs) form an essential category of tools for developing software that should support software engineering decision making. Unfortunately, rigid and generic IDEs that focus on low-level programming tasks, that promote code rather than data, and that suppress customization, offer limited support for informed decision making during software development. We propose to improve decision making within IDEs by moving from generic to context-aware IDEs through moldable tools. In this paper, we promote the idea of moldable tools, illustrate it with concrete examples, and discuss future research directions.
Resumo:
When a project is realized in a globalized environment, multiple stakeholders from different organizations work on the same system. Depending on the stakeholders and their organizations, various (possibly overlapping) concerns are raised in the development of the system. In this context a Domain Specific Language (DSL) supports the work of a group of stakeholders who are responsible for addressing a specific set of concerns. This chapter identifies the open challenges arising from the coordination of globalized domain-specific languages. We identify two types of coordination: technical coordination and social coordination. After presenting an overview of the current state of the art, we discuss first the open challenges arising from the composition of multiple DSLs, and then the open challenges associated to the collaboration in a globalized environment.
Resumo:
When analysing software metrics, users find that visualisation tools lack support for (1) the detection of patterns within metrics; and (2) enabling analysis of software corpora. In this paper we present Explora, a visualisation tool designed for the simultaneous analysis of multiple metrics of systems in software corpora. Explora incorporates a novel lightweight visualisation technique called PolyGrid that promotes the detection of graphical patterns. We present an example where we analyse the relation of subtype polymorphism with inheritance and invocation in corpora of Smalltalk and Java systems and find that (1) subtype polymorphism is more likely to be found in large hierarchies; (2) as class hierarchies grow horizontally, they also do so vertically; and (3) in polymorphic hierarchies the length of the name of the classes is orthogonal to the cardinality of the call sites.
Resumo:
Subtype polymorphism is a cornerstone of object-oriented programming. By hiding variability in behavior behind a uniform interface, polymorphism decouples clients from providers and thus enables genericity, modularity and extensi- bility. At the same time, however, it scatters the implementation of the behavior over multiple classes thus potentially hampering program comprehension. The extent to which polymorphism is used in real programs and the impact of polymorphism on program comprehension are not very well understood. We report on a preliminary study of the prevalence of polymorphism in several hundred open source software systems written in Smalltalk, one of the oldest object-oriented programming languages, and in Java, one of the most widespread ones. Although a large portion of the call sites in these systems are polymorphic, a majority have a small number of potential candidates. Smalltalk uses polymorphism to a much greater extent than Java. We discuss how these findings can be used as input for more detailed studies in program comprehension and for better developer support in the IDE.