92 resultados para Wave tank


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Abnormal ECG findings suggestive of cardiac disease are frequent in patients with funnel chest, although structural heart disease is rare. Electrocardiographic characteristics and changes following new surgical treatments in young adults are not described so far. The aim of the study was to analyze electrocardiographic characteristics of patients with funnel chest before and after minimally invasive funnel chest correction by the Nuss procedure. METHODS Twenty-six patients with surgical correction of funnel chest using pectus bar were included. Twelve-lead ECGs before and later than one year after surgery were analyzed. RESULTS In postoperative ECGs, amplitude of P wave in lead II and negative terminal amplitude of P wave in lead V1 decreased from 0.13 to 0.10mV (p=0.03), and from 0.10 to 0.04mV (p<0.001), respectively. Mean QRS duration decreased from 108ms to 98ms (p=0.003) after correction. A pathological left and right Sokolow-Lyon index was observed in 35% and 23% of patients before, versus 8% (p=0.04) and 0% (p=0.01) after correction, respectively. In contrast, the rate of patients with J wave pattern in precordial leads V4-V6 increased from 8% before to 42% after surgery (p=0.004). CONCLUSIONS ECG abnormalities in patients with funnel chest are frequent, and can normalize after surgical correction by the Nuss procedure. De novo J wave pattern in precordial leads V4-V6 is a frequent finding after surgical funnel chest correction using pectus bar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Inferolateral early repolarization (ER) is highly prevalent and is associated with idiopathic ventricular fibrillation (VF). OBJECTIVE The purpose of this study was to evaluate the potential role of T-wave parameters to differentiate between malignant and benign ER. METHODS We compared the ECGs of patients with ER and VF (n = 92) with control subjects with asymptomatic ER (n = 247). We assessed J-wave amplitude, QTc interval, T-wave/R-wave (T/R) ratio in leads II and V5, and presence of low-amplitude T waves (T-wave amplitude <0.1 mV and <10% of R-wave amplitude in lead I, II, or V4-V6). RESULTS Compared to controls, the VF group had longer QTc intervals (388 ms vs 377 ms, P = .001), higher J-wave amplitudes (0.23 mV vs 0.17 mV, P <.001), higher prevalence of low-amplitude T waves (29% vs 3%, P <.001), and lower T/R ratio (0.18 vs 0.30, P <.001). Logistic regression analysis demonstrated that QTc interval (odds ratio [OR] per 10 ms: 1.15, 95% confidence interval [CI} 1.02-1.30), maximal J-wave amplitude (OR per 0.1 mV: 1.68, 95% CI 1.23-2.31), lower T/R ratio (OR per 0.1 unit: 0.62, 95% CI 0.47-0.81), presence of low-amplitude T waves (OR 3.53, 95% CI 1.26-9.88). and presence of J waves in the inferior leads (OR 2.58, 95% CI 1.18-5.65) were associated with malignant ER. CONCLUSION Patients with malignant ER have a higher prevalence of low-amplitude T waves, lower T/R ratio (lead II or V5), and longer QTc interval. The combination of these parameters with J-wave amplitude and distribution of J waves may allow for improved identification of malignant ER.