99 resultados para Tumor cells


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intratumoral hypoxia is prevalent in many solid tumors and is a marker of poor clinical prognosis in prostate cancer. The presence of hypoxia is associated with increased chromosomal instability, gene amplification, downregulation of DNA damage repair pathways, and altered sensitivity to agents that damage DNA. These genomic changes could also lead to oncogene activation or tumor suppressor gene inactivation during prostate cancer progression. We review here the concept of repair-deficient hypoxic tumor cells that can adapt to low oxygen levels and acquire an aggressive "unstable mutator" phenotype. We speculate that hypoxia-induced genomic instability may also be a consequence of aberrant mitotic function in hypoxic cells, which leads to increased chromosomal instability and aneuploidy. Because both hypoxia and aneuploidy are prognostic factors in prostate cancer, a greater understanding of these biological states in prostate cancer may lead to novel prognostic and predictive tests and drive new therapeutic strategies in the context of personalized cancer medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND & AIMS Senescence prevents cellular transformation. We investigated whether vascular endothelial growth factor (VEGF) signaling via its receptor, VEGFR2, regulates senescence and proliferation of tumor cells in mice with colitis-associated cancer (CAC). METHODS CAC was induced in VEGFR2(ΔIEC) mice, which do not express VEGFR2 in the intestinal epithelium, and VEGFR2(fl/fl) mice (controls) by administration of azoxymethane followed by dextran sodium sulfate. Tumor development and inflammation were determined by endoscopy. Colorectal tissues were collected for immunoblot, immunohistochemical, and quantitative polymerase chain reaction analyses. Findings from mouse tissues were confirmed in human HCT116 colorectal cancer cells. We analyzed colorectal tumor samples from patients before and after treatment with bevacizumab. RESULTS After colitis induction, VEGFR2(ΔIEC) mice developed significantly fewer tumors than control mice. A greater number of intestinal tumor cells from VEGFR2(ΔIEC) mice were in senescence than tumor cells from control mice. We found VEGFR2 to activate phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT, resulting in inactivation of p21 in HCT116 cells. Inhibitors of VEGFR2 and AKT induced senescence in HCT116 cells. Tumor cell senescence promoted an anti-tumor immune response by CD8(+) T cells in mice. Patients whose tumor samples showed an increase in the proportion of senescent cells after treatment with bevacizumab had longer progression-free survival than patients in which the proportion of senescent tumor cells did not change before and after treatment. CONCLUSIONS Inhibition of VEGFR2 signaling leads to senescence of human and mouse colorectal cancer cells. VEGFR2 interacts with phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT to inactivate p21. Colorectal tumor senescence and p21 level correlate with patient survival during treatment with bevacizumab.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Minimal residual disease (MRD) is a major hurdle in the eradication of malignant tumors. Despite the high sensitivity of various cancers to treatment, some residual cancer cells persist and lead to tumor recurrence and treatment failure. Obvious reasons for residual disease include mechanisms of secondary therapy resistance, such as the presence of mutant cells that are insensitive to the drugs, or the presence of cells that become drug resistant due to activation of survival pathways. In addition to such unambiguous resistance modalities, several patients with relapsing tumors do not show refractory disease and respond again when the initial therapy is repeated. These cases cannot be explained by the selection of mutant tumor cells, and the precise mechanisms underlying this clinical drug resistance are ill-defined. In the current review, we put special emphasis on cell-intrinsic and -extrinsic mechanisms that may explain mechanisms of MRD that are independent of secondary therapy resistance. In particular, we show that studying genetically engineered mouse models (GEMMs), which highly resemble the disease in humans, provides a complementary approach to understand MRD. In these animal models, specific mechanisms of secondary resistance can be excluded by targeted genetic modifications. This allows a clear distinction between the selection of cells with stable secondary resistance and mechanisms that result in the survival of residual cells but do not provoke secondary drug resistance. Mechanisms that may explain the latter feature include special biochemical defense properties of cancer stem cells, metabolic peculiarities such as the dependence on autophagy, drug-tolerant persisting cells, intratumoral heterogeneity, secreted factors from the microenvironment, tumor vascularization patterns and immunosurveillance-related factors. We propose in the current review that a common feature of these various mechanisms is cancer cell dormancy. Therefore, dormant cancer cells appear to be an important target in the attempt to eradicate residual cancer cells, and eventually cure patients who repeatedly respond to anticancer therapy but lack complete tumor eradication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance to current chemo- and radiation therapy is the principal problem in anticancer treatment. Although intensively investigated, the therapeutic outcome is still far from satisfactory. Among the multiple factors which contribute to the drug resistance in cancer cells, the involvement of autophagy is becoming more and more evident. Autophagy describes a cellular self-digestion process, in which cytoplasmic elements can be selectively engulfed and finally degraded in autophagolysosomes to supply nutrients and building blocks for the cells. Autophagy controls cellular homeostasis and can be induced in response to stresses, like hypoxia and growth factor withdrawal. Since the essential physiological function of autophagy is to maintain cellular metabolic balance, dysregulated autophagy has been found associated with multiple diseases, including cancer. Interestingly, the role of autophagy in cancer is two-sided; it can be pro- or antitumor. Autophagy can suppress tumor formation, for example, by controlling cell proliferation and the production of reactive oxygen species. On the other hand, autophagy can provide nutrients to the tumor cells to support tumor growth under nutrition-limiting conditions, thereby promoting tumor development. This ambivalent behavior is also evident in anticancer therapy: By inducing autophagic cell death, autophagy has been shown to potentiate the cytotoxicity of chemotherapeutic drugs, but autophagy has also been linked to drug resistance, since inhibiting autophagy has been found to sensitize tumor cells toward anticancer drug-induced cell death. In this chapter, we will focus on the dual role of autophagy in tumorigenesis and chemotherapy, will classify autophagy inducers and inhibitors used in anticancer treatment, and will discuss topics related to future drug development which have arisen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Clinical treatment of spinal metastasis is gaining in complexity while the underlying biology remains unknown. Insufficient biological understanding is due to a lack of suitable experimental animal models. Intercellular adhesion molecule-1 (ICAM1) has been implicated in metastasis formation. Its role in spinal metastasis remains unclear. It was the aim to generate a reliable spinal metastasis model in mice and to investigate metastasis formation under ICAM1 depletion. MATERIAL AND METHODS B16 melanoma cells were infected with a lentivirus containing firefly luciferase (B16-luc). Stable cell clones (B16-luc) were injected retrogradely into the distal aortic arch. Spinal metastasis formation was monitored using in vivo bioluminescence imaging/MRI. Neurological deficits were monitored daily. In vivo selected, metastasized tumor cells were isolated (mB16-luc) and reinjected intraarterially. mB16-luc cells were injected intraarterially in ICAM1 KO mice. Metastasis distribution was analyzed using organ-specific fluorescence analysis. RESULTS Intraarterial injection of B16-luc and metastatic mB16-luc reliably induced spinal metastasis formation with neurological deficits (B16-luc:26.5, mB16-luc:21 days, p<0.05). In vivo selection increased the metastatic aggressiveness and led to a bone specific homing phenotype. Thus, mB16-luc cells demonstrated higher number (B16-luc: 1.2±0.447, mB16-luc:3.2±1.643) and increased total metastasis volume (B16-luc:2.87±2.453 mm3, mB16-luc:11.19±3.898 mm3, p<0.05) in the spine. ICAM1 depletion leads to a significantly reduced number of spinal metastasis (mB16-luc:1.2±0.84) with improved neurological outcome (29 days). General metastatic burden was significantly reduced under ICAM1 depletion (control: 3.47×10(7)±1.66×10(7); ICAM-1-/-: 5.20×10(4)±4.44×10(4), p<0.05 vs. control) CONCLUSION Applying a reliable animal model for spinal metastasis, ICAM1 depletion reduces spinal metastasis formation due to an organ-unspecific reduction of metastasis development.