197 resultados para Thesleff, Holger
Resumo:
BACKGROUND: Febrile neutropenia (FN) and other infectious complications are some of the most serious treatment-related toxicities of chemotherapy for cancer, with a mortality rate of 2% to 21%. The two main types of prophylactic regimens are granulocyte (G-CSF) or granulocyte-macrophage colony stimulating factors (GM-CSF); and antibiotics, frequently quinolones or cotrimoxazole. Important current guidelines recommend the use of colony stimulating factors when the risk of febrile neutropenia is above 20% but they do not mention the use of antibiotics. However, both regimens have been shown to reduce the incidence of infections. Since no systematic review has compared the two regimens, a systematic review was undertaken. OBJECTIVES: To compare the effectiveness of G-CSF or GM-CSF with antibiotics in cancer patients receiving myeloablative chemotherapy with respect to preventing fever, febrile neutropenia, infection, infection-related mortality, early mortality and improving quality of life. SEARCH STRATEGY: We searched The Cochrane Library, MEDLINE, EMBASE, databases of ongoing trials, and conference proceedings of the American Society of Clinical Oncology and the American Society of Hematology (1980 to 2007). We planned to include both full-text and abstract publications. SELECTION CRITERIA: Randomised controlled trials comparing prophylaxis with G-CSF or GM-CSF versus antibiotics in cancer patients of all ages receiving chemotherapy or bone marrow or stem cell transplantation were included for review. Both study arms had to receive identical chemotherapy regimes and other supportive care. DATA COLLECTION AND ANALYSIS: Trial eligibility and quality assessment, data extraction and analysis were done in duplicate. Authors were contacted to obtain missing data. MAIN RESULTS: We included two eligible randomised controlled trials with 195 patients. Due to differences in the outcomes reported, the trials could not be pooled for meta-analysis. Both trials showed non-significant results favouring antibiotics for the prevention of fever or hospitalisation for febrile neutropenia. AUTHORS' CONCLUSIONS: There is no evidence for or against antibiotics compared to G(M)-CSFs for the prevention of infections in cancer patients.
Resumo:
BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.
Resumo:
We investigated if the MET-activating point mutation Y1253D influences clinical outcomes in patients with advanced squamous cell carcinoma of the head and neck (HNSCC). The study population consisted of 152 HNSCC patients treated by hyperfractionated radiotherapy alone or concomitant with chemotherapy between September 1994 and July 2000. Tumors were screened for the presence of the MET-activating point mutation Y1253D. Seventy-eight patients (51%) received radiotherapy alone, 74 patients (49%) underwent radiotherapy concomitant with chemotherapy. Median patient age was 54 years and median follow-up was 5.5 years. Distant metastasis-free survival, local relapse-free survival and overall survival were compared with MET Y1253D status. During follow-up, 29 (19%) patients developed distant metastasis. MET Y1253D was detected in tumors of 21 out of 152 patients (14%). Distant metastasis-free survival (P = 0.008) was associated with MET Y1253D. In a multivariate Cox regression model, adjusted for T-category, only presence of MET Y1253D was associated with decreased distant metastasis-free survival: hazard ratio = 2.5 (95% confidence interval: 1.1, 5.8). The observed association between MET Y1253D-activating point mutation and decreased distant metastasis-free survival in advanced HNSCC suggests that MET may be a potential target for specific treatment interventions.
Resumo:
BACKGROUND: Single-center reports have identified retrograde ascending aortic dissection (rAAD) as a potentially lethal complication of thoracic endovascular aortic repair (TEVAR). METHODS AND RESULTS: Between 1995 and 2008, 28 centers participating in the European Registry on Endovascular Aortic Repair Complications reported a total of 63 rAAD cases (incidence, 1.33%; 95% CI, 0.75 to 2.40). Eighty-one percent of patients underwent TEVAR for acute (n=26, 54%) or chronic type B dissection (n=13, 27%). Stent grafts with proximal bare springs were used in majority of patients (83%). Only 7 (15%) patients had intraoperative rAAD, with the remaining occurring during the index hospitalization (n=10, 21%) and during follow-up (n=31, 64%). Presenting symptoms included acute chest pain (n=16, 33%), syncope (n=12, 25%), and sudden death (n=9, 19%) whereas one fourth of patients were asymptomatic (n=12, 25%). Most patients underwent emergency (n=25) or elective (n=5) surgical repair. Outcome was fatal in 20 of 48 patients (42%). Causes of rAAD included the stent graft itself (60%), manipulation of guide wires/sheaths (15%), and progression of underlying aortic disease (15%). CONCLUSIONS: The incidence of rAAD was low (1.33%) in the present analysis with high mortality (42%). Patients undergoing TEVAR for type B dissection appeared to be most prone for the occurrence of rAAD. This complication occurred not only during the index hospitalization but after discharge up to 1050 days after TEVAR. Importantly, the majority of rAAD cases were associated with the use of proximal bare spring stent grafts with direct evidence of stent graft-induced injury at surgery or necropsy in half of the patients.