111 resultados para The selfish gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be "probably damaging" to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can now be used to eliminate the disease in Alaskan Malamutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Müllerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recurrent airway obstruction is one of the most common airway diseases affecting mature horses. Increased bronchoalveolar mucus, neutrophil accumulation in airways, and airway obstruction are the main features of this disease. Mucociliary clearance is a key component of pulmonary defense mechanisms. Cilia are the motile part of this system and a complex linear array of dynein motors is responsible for their motility by moving along the microtubules in the axonemes of cilia and flagella. We previously detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. The gene encoding DNAH3 is located in the peak of the detected QTL and encodes a dynein subunit. Therefore, we analysed this gene as a positional and functional candidate gene for RAO. In a mutation analysis of all 62 exons we detected 53 new polymorphisms including 7 non-synonymous variants. We performed an association study using 38 polymorphisms in a cohort of 422 animals. However, after correction for multiple testing we did not detect a significant association of any of these polymorphisms with RAO (P>0.05). Therefore, it seems unlikely that variants at the DNAH3 gene are responsible for the RAO QTL in European Warmblood horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital hepatic fibrosis has been described as a lethal disease with monogenic autosomal recessive inheritance in the Swiss Franches-Montagnes horse breed. We performed a genome-wide association study with 5 cases and 12 controls and detected an association on chromosome 20. Subsequent homozygosity mapping defined a critical interval of 952 kb harboring 10 annotated genes and loci including the polycystic kidney and hepatic disease 1 (autosomal recessive) gene (PKHD1). PKHD1 represents an excellent functional candidate as variants in this gene were identified in human patients with autosomal recessive polycystic kidney and hepatic disease (ARPKD) as well as several mouse and rat mutants. Whereas most pathogenic PKHD1 variants lead to polycystic defects in kidney and liver, a small subset of the human ARPKD patients have only liver symptoms, similar to our horses with congenital hepatic fibrosis. The PKHD1 gene is one of the largest genes in the genome with multiple alternative transcripts that have not yet been fully characterized. We sequenced the genomes of an affected foal and 46 control horses to establish a comprehensive list of variants in the critical interval. We identified two missense variants in the PKHD1 gene which were strongly, but not perfectly associated with congenital hepatic fibrosis. We speculate that reduced penetrance and/or potential epistatic interactions with hypothetical modifier genes may explain the imperfect association of the detected PKHD1 variants. Our data thus indicate that horses with congenital hepatic fibrosis represent an interesting large animal model for the liver-restricted subtype of human ARPKD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aim of characterizing specific immunogenic proteins of Mycoplasma mycoides subsp. mycoides small colony (SC) type, the aetiological agent of contagious bovine pleuropneumonia, a gene encoding a major immunogenic protein of 72 kDa named P72 was cloned and expressed in Escherichia coli. The expressed protein was of the same apparent molecular mass as that produced by the parent strain. The predicted molecular mass of P72, based on the DNA-deduced amino acid sequence, was 61.118 kDa, significantly lower than the apparent molecular mass of endogenous or recombinant P72 on SDS-PAGE. Analysis of the amino acid sequence revealed a typical prokaryotic signal peptidase II-membrane lipoprotein lipid attachment site and a transmembrane structure domain in the leader sequence at the amino-terminal end of the protein. P72 was shown to be a lipoprotein and its surface location was confirmed by trypsin treatment of whole cells. An unassigned gene encoding a peptide with some similarity to P72 was found on the genome sequence of M. capricolum subsp. capricolum but not on that of Mycoplasma genitalium. The P72 gene was detected in 11/11 M. mycoides subsp. mycoides SC strains. Antiserum against recombinant P72 reacted strongly with 12/12 strains of M. mycoides subsp. mycoides SC, weakly with Mycoplasma bovine group 7 strain PG50, but not with other members of the 'mycoides cluster' or closely related mycoplasmas. Cows experimentally contact-infected with M. mycoides subsp. mycoides SC developed a humoral response against P72 within 35 d. P72 is a specific antigenic membrane lipoprotein of M. mycoides subsp. mycoides SC with potential for use in development of diagnostic reagents. It seems to belong to a family of lipoproteins of the "mycoides cluster'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel erythromycin ribosome methylase gene, erm(44), that confers resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics was identified by whole-genome sequencing of the chromosome of Staphylococcus xylosus isolated from bovine mastitis milk. The erm(44) gene is preceded by a regulatory sequence that encodes two leader peptides responsible for the inducible expression of the methylase gene, as demonstrated by cloning in Staphylococcus aureus. The erm(44) gene is located on a 53-kb putative prophage designated ΦJW4341-pro. The 56 predicted open reading frames of ΦJW4341-pro are structurally organized into the five functional modules found in members of the family Siphoviridae. ΦJW4341-pro is site-specifically integrated into the S. xylosus chromosome, where it is flanked by two perfect 19-bp direct repeats, and exhibits the ability to circularize. The presence of erm(44) in three additional S. xylosus strains suggests that this putative prophage has the potential to disseminate MLSB resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Among other mismatches between human and pig, incompatibilities in the blood coagulation systems hamper the xenotransplantation of vascularized organs. The provision of the porcine endothelium with human thrombomodulin (hTM) is hypothesized to overcome the impaired activation of protein C by a heterodimer consisting of human thrombin and porcine TM. METHODS We evaluated regulatory regions of the THBD gene, optimized vectors for transgene expression, and generated hTM expressing pigs by somatic cell nuclear transfer. Genetically modified pigs were characterized at the molecular, cellular, histological, and physiological levels. RESULTS A 7.6-kb fragment containing the entire upstream region of the porcine THBD gene was found to drive a high expression in a porcine endothelial cell line and was therefore used to control hTM expression in transgenic pigs. The abundance of hTM was restricted to the endothelium, according to the predicted pattern, and the transgene expression of hTM was stably inherited to the offspring. When endothelial cells from pigs carrying the hTM transgene--either alone or in combination with an aGalTKO and a transgene encoding the human CD46-were tested in a coagulation assay with human whole blood, the clotting time was increased three- to four-fold (P<0.001) compared to wild-type and aGalTKO/CD46 transgenic endothelial cells. This, for the first time, demonstrated the anticoagulant properties of hTM on porcine endothelial cells in a human whole blood assay. CONCLUSIONS The biological efficacy of hTM suggests that the (multi-)transgenic donor pigs described here have the potential to overcome coagulation incompatibilities in pig-to-primate xenotransplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital pseudomyotonia in Chianina cattle is a muscle function disorder very similar to that of Brody disease in humans. Mutations in the human ATP2A1 gene, encoding SERCA1, cause Brody myopathy. The analysis of the collected Chianina pedigree data suggested monogenic autosomal recessive inheritance and revealed that all 17 affected individuals traced back to a single founder. A deficiency of SERCA1 function in skeletal muscle of pseudomyotonia affected Chianina cattle was observed as SERCA1 activity in affected animals was decreased by about 70%. Linkage analysis showed that the mutation was located in the ATP2A1 gene region on BTA25 and subsequent mutation analysis of the ATP2A1 exons revealed a perfectly associated missense mutation in exon 6 (c.491G>A) leading to a p.Arg164His substitution. Arg164 represents a functionally important and strongly conserved residue of SERCA1. This study provides a suitable large animal model for human Brody disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85% identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Northern blot analysis detected TNFSF10-specific transcripts (approximately 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34-->q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel.