124 resultados para T-lymphocytes, regulatory
Resumo:
Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.
Resumo:
Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.
Resumo:
There is broad international agreement that investment flows to the agricultural sector in developing countries need to be increased. But there is also agreement that such investments need to be sustainable. For being sustainable, they must not only be beneficial to the public economy, but also to rural households and to the environment in the short and the long run. Whether sustainable investments take place, not least depends on the legal framework within which these investments are situated. This is true for the domestic legal frameworks of both the home country and of the host country of the investment. But also the international legal frameworks in which home and host states are embedded set either positive or negative incentives for investments to be sustainable. The paper presents an overview on regulatory frameworks which come to focus in this regard. It then elaborates on international agricultural trade regulation, by assuming that sustainable investments in agriculture presume a ‘sustainable trade regime’. By doing so, the paper presents parts of the debate about a sustainable agricultural trade regime, as it has been resumed and further developed by the author in recent years. Key words. Agricultural sector, sustainable investment, regulatory environment, sustainable trade regime.
Resumo:
BACKGROUND Among other mismatches between human and pig, incompatibilities in the blood coagulation systems hamper the xenotransplantation of vascularized organs. The provision of the porcine endothelium with human thrombomodulin (hTM) is hypothesized to overcome the impaired activation of protein C by a heterodimer consisting of human thrombin and porcine TM. METHODS We evaluated regulatory regions of the THBD gene, optimized vectors for transgene expression, and generated hTM expressing pigs by somatic cell nuclear transfer. Genetically modified pigs were characterized at the molecular, cellular, histological, and physiological levels. RESULTS A 7.6-kb fragment containing the entire upstream region of the porcine THBD gene was found to drive a high expression in a porcine endothelial cell line and was therefore used to control hTM expression in transgenic pigs. The abundance of hTM was restricted to the endothelium, according to the predicted pattern, and the transgene expression of hTM was stably inherited to the offspring. When endothelial cells from pigs carrying the hTM transgene--either alone or in combination with an aGalTKO and a transgene encoding the human CD46-were tested in a coagulation assay with human whole blood, the clotting time was increased three- to four-fold (P<0.001) compared to wild-type and aGalTKO/CD46 transgenic endothelial cells. This, for the first time, demonstrated the anticoagulant properties of hTM on porcine endothelial cells in a human whole blood assay. CONCLUSIONS The biological efficacy of hTM suggests that the (multi-)transgenic donor pigs described here have the potential to overcome coagulation incompatibilities in pig-to-primate xenotransplantation.
Resumo:
The liberalization process of the Swiss telecommunications sector follows a logic of ‘autonomous adaptation’ to the regulations of the European Union (EU). Switzerland, which is not a Member State of the EU, voluntarily adapts to the European policy without being for- mally required to do so (Sciarini et al., 2004). This process went hand in hand with the partial privatization of the legal statute and assets of the former monopolist and with the re-regulation of the liberalized telecommunications sector.
Resumo:
Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.
Resumo:
The color red has been considered to indicate threat in achievement contexts. Recent studies have used brief confrontations with red — either as the color or as the word red — to prime for implicit threat, and have found a related impairment of cognitive performance. In another line of research, it has been shown that initial self-regulatory efforts cause diminished investment of self-regulatory resources afterwards, leading to a relative shift from a controlled to an automatic mode of information processing. We assume that activation of implicit threat via the color or the word red impairs cognitive performance more strongly during automatic compared to controlled processing of information. To test this hypothesis, we manipulated undergraduates’ (n = 78) momentary processing mode (automatic vs. controlled) by an initial task that required either high or low self-regulatory effort. Afterwards, participants were briefly confronted with red or gray stimuli and were then asked to complete a standardized intelligence measure. As expected, confrontation with red, as opposed to gray, impaired intellectual performance when participants were in an automatic processing mode. In contrast, no color effect emerged when participants were in a relatively controlled processing mode. In a second study, we replicated this finding in a sample of secondary school students (n = 130), using the black-printed word red or gray to experimentally manipulate implicit threat. Among others, the present findings may help to explain occasional difficulties in replicating findings of priming research.
Resumo:
BACKGROUND/AIMS Several countries are working to adapt clinical trial regulations to align the approval process to the level of risk for trial participants. The optimal framework to categorize clinical trials according to risk remains unclear, however. Switzerland is the first European country to adopt a risk-based categorization procedure in January 2014. We assessed how accurately and consistently clinical trials are categorized using two different approaches: an approach using criteria set forth in the new law (concept) or an intuitive approach (ad hoc). METHODS This was a randomized controlled trial with a method-comparison study nested in each arm. We used clinical trial protocols from eight Swiss ethics committees approved between 2010 and 2011. Protocols were randomly assigned to be categorized in one of three risk categories using the concept or the ad hoc approach. Each protocol was independently categorized by the trial's sponsor, a group of experts and the approving ethics committee. The primary outcome was the difference in categorization agreement between the expert group and sponsors across arms. Linear weighted kappa was used to quantify agreements, with the difference between kappas being the primary effect measure. RESULTS We included 142 of 231 protocols in the final analysis (concept = 78; ad hoc = 64). Raw agreement between the expert group and sponsors was 0.74 in the concept and 0.78 in the ad hoc arm. Chance-corrected agreement was higher in the ad hoc (kappa: 0.34 (95% confidence interval = 0.10-0.58)) than in the concept arm (0.27 (0.06-0.50)), but the difference was not significant (p = 0.67). LIMITATIONS The main limitation was the large number of protocols excluded from the analysis mostly because they did not fit with the clinical trial definition of the new law. CONCLUSION A structured risk categorization approach was not better than an ad hoc approach. Laws introducing risk-based approaches should provide guidelines, examples and templates to ensure correct application.
Resumo:
OBJECTIVE Several pathogenic roles attributed over the past two decades to either T helper (Th)1 or Th2 cells are increasingly becoming associated with interleukin (IL)-17 and most recently IL-9 signalling. However, the implication of IL-9 in IBD has not been addressed so far. DESIGN We investigated the expression of IL-9 and IL-9R by using peripheral blood, biopsies and surgical samples. We addressed the functional role of IL-9 signalling by analysis of downstream effector proteins. Using Caco-2 cell monolayers we followed the effect of IL-9 on wound healing. RESULTS IL-9 mRNA expression was significantly increased in inflamed samples from patients with UC as compared with controls. CD3(+) T cells were major IL-9-expressing cells and some polymorphonuclear leucocytes (PMN) also expressed IL-9. IL-9 was co-localised with the key Th9 transcription factors interferon regulatory factor 4 and PU.1. Systemically, IL-9 was abundantly produced by activated peripheral blood lymphocytes, whereas its receptor was overexpressed on gut resident and circulating PMN. IL-9 stimulation of the latter induced IL-8 production in a dose-dependent manner and rendered PMN resistant to apoptosis suggesting a functional role for IL-9R signalling in the propagation of gut inflammation. Furthermore, IL-9R was overexpressed on gut epithelial cells and IL-9 induced STAT5 activation in these cells. Moreover, IL-9 inhibited the growth of Caco-2 epithelial cell monolayers in wound healing experiments. CONCLUSIONS Our results provide evidence that IL-9 is predominantly involved in the pathogenesis of UC suggesting that targeting IL-9 might become a therapeutic option for patients with UC.
Resumo:
Regulatory T cells (T(reg)) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4(+)CD25(+) T(reg) were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3(+)CD25(-) T(reg). To obtain more insights in the specific function of T(reg) during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when T(reg) are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.