175 resultados para Schizophrenia.
Resumo:
Schizophrenia is still associated with poor outcome, which is mainly related to negative symptoms, reduced physical activity and low quality of life. Physical activity can be objectively measured without distress using wrist actigraphy. The activity levels during the wake periods of the day have been informative on psychopathology and antipsychotic medication. Several studies demonstrated prominent negative symptoms to be associated with reduced activity levels with strongest correlations in chronic patients. Particularly, the avolition score is correlated with reduced activity levels. Moreover, activity levels differ between DSM-IV schizophrenia spectrum disorders and subtypes as well as between patients treated with olanzapine or risperidone. The longitudinal course of activity levels during an psychotic episode demonstrates considerable variance between subjects. During a psychotic episode patients with low activity levels at baseline experience an amelioration of negative symptoms. In contrast, patients with high activity levels at baseline have stable low negative syndrome scores. Between psychotic episodes less variance is observed. Actigraphy is easily applied in schizophrenia and allows collecting large amounts of crosssectional or longitudinal data. With larger numbers of subjects in controlled trials, continuous recording of activity would foster the detection of different outcome trajectories, which may prove as useful groups to target interventions. In clinical trials, activity monitoring may supplement and validate measures of the negative syndrome and its avolition factor or serve as an outcome marker for physical activity, which is important for metabolic issues and quality of life.
Resumo:
The reward systemin schizophrenia has been linked to the emergence of delusions on the one hand and to negative symptoms such as affective flattening on the other hand. Previous Diffusion Tensor Imaging (DTI) studies reported white matter microstructure alterations of regions related to the reward system. The present study aimed at extending these findings by specifically investigating connection pathways of the reward system in schizophrenia. Therefore, 24 patients with schizophrenia and 22 healthy controls matched for age and gender underwent DTI-scans. Using a probabilistic fiber tracking approachwe bilaterally extracted pathways connecting the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), themedial and lateral orbitofrontal cortices (mOFC, lOFC), the dorsolateral prefrontal cortex (dlPFC) and the amygdala; as well as pathways connecting NAcc with mOFC, lOFC, dlPFC and amygdala resulting in a total of 18 connections. Probability indices forming part of a bundle of interest (PIBI) were compared between groups using independent t-tests. In 6 connection pathways PIBI-valueswere increased in schizophrenia. In 3 of these pathways the spatial extension of connection pathways was decreased. In schizophrenia patients, there was a negative correlation of PIBI-values and PANSS negative scores in the left VTA–amygdala and in the left NAcc–mOFC connection. A sum score of delusions and hallucinations correlated positively with PIBI-values of the left amygdala–NAcc connection. Structural organization of specific segments ofwhite matter pathways of the reward systemin schizophrenia may contribute to the emergence of delusions and negative symptoms in schizophrenia.
Resumo:
Objective: Schizophrenia patients suffer from a variety of motor symptoms, including parkinsonism, catatonia, neurological soft signs, abnormal involuntary movements and psychomotor slowing. Methods: Literature review of prevalence rates and presentation of own results. Results: Parkinsonism and abnormal involuntary movements are intrinsic to schizophrenia, but may also be evoked by antipsychotic treatment. Reduced motor activity is associated with negative symptoms, catatonia and psychomotor slowing. Furthermore, 40 % of schizophrenia patients are impaired in gesture performance, which is related to executive and basic motor function. Mild motor disturbances are found in the majority of patients, while severe dysfunctions are limited to a minority. Our neuroimaging studies suggest that hypokinesia is caused by defective cortico-subcortical motor loops in schizophrenia. Taken together, a dimensional approach to schizophrenia motor symptoms seems promising. A purely descriptive assessment of motor signs is preferred over theoryladen categorization. Using objective motor parameters allows finding neural correlates of abnormal motor behaviour. Conclusion: The motor dimension of schizophrenia is linked to distinct disturbances in the cerebral motor system. Targeted modification of the defective motor system might become a relevant treatment option in patients suffering from schizophrenia with predominant motor features.
Resumo:
The Personal Health Assistant Project (PHA) is a pilot system implementation sponsored by the Kozani Region Governors’ Association (KRGA) and installed in one of the two major public hospitals of the city of Kozani. PHA is intended to demonstrate how a secure, networked, multipurpose electronic health and food benefits digital signage system can transform common TV sets inside patient homes or hospital rooms into health care media players and facilitate information sharing and improve administrative efficiency among private doctors, public health care providers, informal caregivers, and nutrition program private companies, while placing individual patients firmly in control of the information at hand. This case evaluation of the PHA demonstration is intended to provide critical information to other decision makers considering implementing PHA or related digital signage technology at other institutions and public hospitals around the globe.
Resumo:
Background: Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS). Methods: Schizophrenia patients with (AH; n = 12) and without hallucinations (NH; n = 8) and healthy controls (HC; n = 11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically. Results: The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4 ± 6.1 mm (range: 2.7–36.1 mm) for Broca's area and 16.8 ± 6.2 mm (range: 4.5–26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p = 0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p = 0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p = 0.03) and negative (p = 0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p = 0.008). Conclusion: This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions is needed if neurochemical imbalances are expected to be restricted to functional foci.
Resumo:
Agitation is a major problem in acute schizophrenia. Still, only limited evidence exists on antipsychotic efficacy in severely agitated patients after the first 24 hours. We aimed to investigate the efficacy of oral haloperidol, risperidone, and olanzapine in reducing psychotic agitation in severely agitated patients with schizophrenia or schizophreniform or schizoaffective disorder over 96 hours using a prospective, randomized, rater-blinded, controlled design within a naturalistic treatment regimen. We enrolled 43 severely agitated patients at acute care psychiatric units. Participants were randomly assigned to receive either daily haloperidol 15 mg, olanzapine 20 mg, or risperidone 2 – 6 mg over 5 days. Positive and Negative Syndrome Scale psychotic agitation (PANSS-PAS) subscore was the primary outcome variable. A mixed model analyses was applied. All drugs were effective for rapid tranquillization within 2 hours. Over 5 days, the course differed between agents (p < 0.001) but none was superior. Dropouts occurred only in the risperidone and olanzapine groups. Men responded better to treatment than women during the initial 2 hours (p = 0.046) as well as over the 5 day course (p < 0.001). No difference between drug groups was observed regarding diazepam or biperiden use. Oral haloperidol, risperidone, and olanzapine seem to be suitable for treating acute severe psychotic agitation in schizophrenia spectrum disorders. We observed a gender effect with poorer outcome in women.
Resumo:
Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.