96 resultados para SHAPE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic signatures are common components of avian vocalizations and are important for the recognition of individuals and groups. The proximate mechanisms by which these signatures develop are poorly understood, however. The development of acoustic signatures in nestling birds is of particular interest, because high rates of extra-pair paternity or egg dumping can cause nestlings to be unrelated to at least one of the adults that are caring for them. In such cases, nestlings might conceal their genetic origins, by developing acoustic signatures through environmental rather than genetic mechanisms. In a cross-fostering experiment with tree swallows Tachycineta bicolor, we investigated whether brood signatures of nestlings that were about to fledge were attributable to their genetic/maternal origins or to their rearing environment. We found that the calls of cross-fostered nestlings did not vary based on their genetic/maternal origin, but did show some variation based on their rearing environment. Control nestlings that were not swapped, however, showed stronger brood signatures than either experimental group, suggesting that acoustic signatures develop through an interaction between rearing environment and genetic/maternal effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface.