103 resultados para Refractive errors - Epidemiology
Resumo:
The planning of refractive surgical interventions is a challenging task. Numerical modeling has been proposed as a solution to support surgical intervention and predict the visual acuity, but validation on patient specific intervention is missing. The purpose of this study was to validate the numerical predictions of the post-operative corneal topography induced by the incisions required for cataract surgery. The corneal topography of 13 patients was assessed preoperatively and postoperatively (1-day and 30-day follow-up) with a Pentacam tomography device. The preoperatively acquired geometric corneal topography – anterior, posterior and pachymetry data – was used to build patient-specific finite element models. For each patient, the effects of the cataract incisions were simulated numerically and the resulting corneal surfaces were compared to the clinical postoperative measurements at one day and at 30-days follow up. Results showed that the model was able to reproduce experimental measurements with an error on the surgically induced sphere of 0.38D one day postoperatively and 0.19D 30 days postoperatively. The standard deviation of the surgically induced cylinder was 0.54D at the first postoperative day and 0.38D 30 days postoperatively. The prediction errors in surface elevation and curvature were below the topography measurement device accuracy of ±5μm and ±0.25D after the 30-day follow-up. The results showed that finite element simulations of corneal biomechanics are able to predict post cataract surgery within topography measurement device accuracy. We can conclude that the numerical simulation can become a valuable tool to plan corneal incisions in cataract surgery and other ophthalmosurgical procedures in order to optimize patients' refractive outcome and visual function.
Resumo:
In this article we focus on the emotional basis of face perception. In addition, the most important findings concerning epidemiology and etiology of body dysmorphic disorder (BDD) will be reviewed and related to face perception. BDD can be seen as an emotional disorder in which fundamental errors in terms of information processing, especially concerning faces occur. Emotional information is misinterpreted. Both, emotional misinterpretation as well as errors in face perception and recognition are part of the disorder. The relevance of BDD respective to esthetic surgery is discussed. Alternative options for patients such as psychotherapy or pharmacotherapy for this disorder are also related to.
Resumo:
BACKGROUND: Although brucellosis (Brucella spp.) and Q Fever (Coxiella burnetii) are zoonoses of global importance, very little high quality data are available from West Africa. METHODS/PRINCIPAL FINDINGS: A serosurvey was conducted in Togo's main livestock-raising zone in 2011 in 25 randomly selected villages, including 683 people, 596 cattle, 465 sheep and 221 goats. Additionally, 464 transhumant cattle from Burkina Faso were sampled in 2012. The serological analyses performed were the Rose Bengal Test and ELISA for brucellosis and ELISA and the immunofluorescence assay (IFA) for Q Fever Brucellosis did not appear to pose a major human health problem in the study zone, with only 7 seropositive participants. B. abortus was isolated from 3 bovine hygroma samples, and is likely to be the predominant circulating strain. This may explain the observed seropositivity amongst village cattle (9.2%, 95%CI:4.3-18.6%) and transhumant cattle (7.3%, 95%CI:3.5-14.7%), with an absence of seropositive small ruminants. Exposure of livestock and people to C. burnetii was common, potentially influenced by cultural factors. People of Fulani ethnicity had greater livestock contact and a significantly higher seroprevalence than other ethnic groups (Fulani: 45.5%, 95%CI:37.7-53.6%; non-Fulani: 27.1%, 95%CI:20.6-34.7%). Appropriate diagnostic test cut-off values in endemic settings requires further investigation. Both brucellosis and Q Fever appeared to impact on livestock production. Seropositive cows were more likely to have aborted a foetus during the previous year than seronegative cows, when adjusted for age. This odds was 3.8 times higher (95%CI: 1.2-12.1) for brucellosis and 6.7 times higher (95%CI: 1.3-34.8) for Q Fever. CONCLUSIONS: This is the first epidemiological study of zoonoses in Togo in linked human and animal populations, providing much needed data for West Africa. Exposure to Brucella and C. burnetii is common but further research is needed into the clinical and economic impact.
Resumo:
The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.
Resumo:
Bacterial cold water disease (BCWD) and rainbow trout fry syndrome (RTFS) caused by Flavobacterium psychrophilum are 2 of the major diseases causing high fish mortality in salmonid fish farms. The molecular epidemiology of F. psychrophilum is still largely unknown. Multilocus sequence typing (MLST) has been previously used for this pathogen and underscored a correlation between clonal complexes and host fish species. Here we used MLST to study the relationships among 112 F. psychrophilum isolates from rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta fario and S. t. lacustris in Swiss fish farms between 1993 and 2012. The isolates belonged to 27 different sequence types (STs). Most of the Swiss outbreaks were associated with strains belonging to clonal complexes CC-ST2 and CC-ST90, found in both rainbow trout and brown trout and represented by several STs. Eight ST singletons could not be connected to any known clonal complex. Already reported from other parts of Europe and North America, CC-ST2 was the most frequent clonal complex observed, and it caused the majority of outbreaks in Switzerland, with CC-ST90 being the second most important type. In the tightly interconnected Swiss fish farms, no association between clonal complex and host fish was detected, but a temporal evolution of the frequency of some STs was observed. The occurrence of sporadic STs suggests high F. psychrophilum diversity and may reflect the presence of different sequence types in the environment.
Resumo:
OBJECTIVES: The aim of this study was to determine whether the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)- or Cockcroft-Gault (CG)-based estimated glomerular filtration rates (eGFRs) performs better in the cohort setting for predicting moderate/advanced chronic kidney disease (CKD) or end-stage renal disease (ESRD). METHODS: A total of 9521 persons in the EuroSIDA study contributed 133 873 eGFRs. Poisson regression was used to model the incidence of moderate and advanced CKD (confirmed eGFR < 60 and < 30 mL/min/1.73 m(2) , respectively) or ESRD (fatal/nonfatal) using CG and CKD-EPI eGFRs. RESULTS: Of 133 873 eGFR values, the ratio of CG to CKD-EPI was ≥ 1.1 in 22 092 (16.5%) and the difference between them (CG minus CKD-EPI) was ≥ 10 mL/min/1.73 m(2) in 20 867 (15.6%). Differences between CKD-EPI and CG were much greater when CG was not standardized for body surface area (BSA). A total of 403 persons developed moderate CKD using CG [incidence 8.9/1000 person-years of follow-up (PYFU); 95% confidence interval (CI) 8.0-9.8] and 364 using CKD-EPI (incidence 7.3/1000 PYFU; 95% CI 6.5-8.0). CG-derived eGFRs were equal to CKD-EPI-derived eGFRs at predicting ESRD (n = 36) and death (n = 565), as measured by the Akaike information criterion. CG-based moderate and advanced CKDs were associated with ESRD [adjusted incidence rate ratio (aIRR) 7.17; 95% CI 2.65-19.36 and aIRR 23.46; 95% CI 8.54-64.48, respectively], as were CKD-EPI-based moderate and advanced CKDs (aIRR 12.41; 95% CI 4.74-32.51 and aIRR 12.44; 95% CI 4.83-32.03, respectively). CONCLUSIONS: Differences between eGFRs using CG adjusted for BSA or CKD-EPI were modest. In the absence of a gold standard, the two formulae predicted clinical outcomes with equal precision and can be used to estimate GFR in HIV-positive persons.
Resumo:
Using a weighted up-down procedure, in each of eight conditions 28 participants compared durations of auditory (noise bursts) or visual (LED flashes) intervals; filled or unfilled with 3-ms markers; with or without feedback. Standards (Sts) were 100 and 1000 ms, and the ISI 900 ms. Intermixedly, presentation orders were St-Comparison (Co) and Co-St. TOEs were positive for St=100-ms and negative for St=1000 ms. Weber fractions (WFs, JND/St) were lowered by feedback. For visual-filled and visual-empty, WFs were highest for St=100 ms. For auditory-filled and visual-empty, St interacted with Order: lowest WFs occurred for St-Co with St=1000 ms, but for Co-St with St=100 ms. Lowest average WFs occurred with St-Co for visual-filled, but with Co-St for visual-empty. The results refute the generalization of better discrimination with St-Co than with Co-St (”type-B effect”), and support the notion of sensation weighting: flexibly differential impact weights of the compared durations in generating the response.
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
Upper-air observations are a fundamental data source for global atmospheric data products, but uncertainties, particularly in the early years, are not well known. Most of the early observations, which have now been digitized, are prone to a large variety of undocumented uncertainties (errors) that need to be quantified, e.g., for their assimilation in reanalysis projects. We apply a novel approach to estimate errors in upper-air temperature, geopotential height, and wind observations from the Comprehensive Historical Upper-Air Network for the time period from 1923 to 1966. We distinguish between random errors, biases, and a term that quantifies the representativity of the observations. The method is based on a comparison of neighboring observations and is hence independent of metadata, making it applicable to a wide scope of observational data sets. The estimated mean random errors for all observations within the study period are 1.5 K for air temperature, 1.3 hPa for pressure, 3.0 ms−1for wind speed, and 21.4° for wind direction. The estimates are compared to results of previous studies and analyzed with respect to their spatial and temporal variability.