115 resultados para Radiation dose
Resumo:
BACKGROUND AND PURPOSE: Analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. PATIENTS AND METHODS: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. RESULTS: At the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm(3) and in dimensions (width, height, length) from -1.1 to 1.0 cm. CONCLUSION: Preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality is less impaired in subsequent implants of fractionated brachytherapy.
Resumo:
In external beam radiotherapy, electronic portal imaging becomes more and more an indispensable tool for the verification of the patient setup. For the safe clinical introduction of high dose conformal radiotherapy like intensity modulated radiation therapy, on-line patient setup verification is a prerequisite to ensure that the planned dosimetric coverage of the tumor volume is actually realized in the patient. Since the direction of setup fields often deviates from the direction of the treatment beams, extra dose is delivered to the patient during the acquisition of these portal images which may reach clinical relevance. The aim of this work was to develop a new acquisition mode for the PortalVision aS500 electronic portal imaging device from Varian Medical Systems that allows one to take portal images with reduced dose while keeping good image quality. The new acquisition mode, called RadMode, selectively enables and disables beam pulses during image acquisition allowing one to stop wasting valuable dose during the initial acquisition of "reset frames." Images of excellent quality can be taken with 1 MU only. This low dose per image facilitates daily setup verification with considerably reduced extra dose.
Resumo:
For every diagnostical X-ray radiation exposure the applied dose has to be limited to the smallest possible value. Within the scope of a general Swiss survey it has been found that in the various medical practices and hospitals the applied doses varied quite strongly. The main reasons leading to an overdose were the operating conditions of the X-ray and film processing equipment, the film and foil materials and improper filming techniques. The applied single dose served as a measure for the radiation protection assessment of diagnostical X-ray exposures. To prevent this in the future, individual patients who are exposed to unnecessary radiation loads should be regularly checked in quality-ensuring tests.
Resumo:
Various conventional and modern fluoroscope units had been examined with an anthropomorphic phantom to determine the applied average organ doses. The aim of our investigation was to compare these doses with those normally delivered to the patients during a conventional X-ray examination of the thorax. As was to be expected, the doses resulting from conventional fluoroscopic units are much higher than the doses from modern units. As shown by means of our measurements, the efforts of advanced technology permit to reduce the dose rate up to a factor of 30. I.e., the doses resulting from modern fluoroscopic units are even smaller than the doses received during a conventional thoracic X-ray examination, what means a great improvement for this examination technic.
Resumo:
The radiation burden of an individual patient caused by a radiological examination depends strongly on the technical parameters, such as kV and mAs. As an inquiry among 150 swiss physicians showed, rather different irradiation techniques are used for the same examination. Depending on these irradiation techniques, the doses may vary by almost a factor of ten. These large variations in dose indicate that in some clinics or hospitals the radiographic techniques and the film processing are at fault. This fact has to be accounted for by future efforts of quality assurance in diagnostic radiology.
Resumo:
STUDY DESIGN: A prospective case control study design was conducted. OBJECTIVES: The purpose of the current study was to determine the intraoperative radiation hazard to spine surgeons by occupational radiation exposure during percutaneous vertebroplasty and possible consequences with respect to radiation protection. SUMMARY OF BACKGROUND DATA: The development of minimally invasive surgery techniques has led to an increasing number of fluoroscopically guided procedures being done percutaneously such as vertebroplasty, which is the percutaneous cement augmentation of vertebral bodies. METHODS: Three months of occupational dose data for two spine surgeons was evaluated measuring the radiation doses to the thyroid gland, the upper extremities, and the eyes during vertebroplasty. RESULTS: The annual risk of developing a fatal cancer of the thyroid is 0.0025%, which means a very small to small risk. The annual morbidity (the risk of developing a cancer including nonfatal ones) is 0.025%, which already means a small to medium risk. The dose for the eye lens was about 8% of the threshold dose to develop a radiation induced cataract (150 mSv); therefore, the risk is very low but not negligible. The doses measured for the skin are 10% of the annual effective dose limit (500 mSv) recommended by the ICRP (International Commission on Radiologic Protection); therefore, the annual risk for developing a fatal skin cancer is very low. CONCLUSION: While performing percutaneous vertebroplasty, the surgeon is exposed to a significant amount of radiation. Proper surgical technique and shielding devices to decrease potentially high morbidity are mandatory. Training in radiation protection should be an integral part of the education for all surgeons using minimally invasive radiologic-guided interventional techniques.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.
Resumo:
OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.
Resumo:
Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for gamma-radiation biodosimetry in a mouse model. Mice were gamma-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and beta-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose-response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to gamma radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans.
Resumo:
Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.
Resumo:
BACKGROUND AND PURPOSE: : Proton radiation has been used for the treatment of uveal melanoma since 1975, but few studies have been conducted to assess its efficacy and safety. This paper aims to systematically review the effects and side effects of proton therapy for any indication of the eye. MATERIAL AND METHODS: : A range of databases were searched from inception to 2007. All studies that included at least ten patients and that assessed the efficacy or safety of proton therapy for any indication of the eye were included. RESULTS: : The search generated 2,385 references, of which 37 met the inclusion criteria. Five controlled trials, two comparative studies and 30 case series were found, most often reporting on uveal melanoma, choroidal melanoma and age-related macular degeneration (AMD). Methodological quality of these studies was poor. Studies were characterized by large differences in radiation techniques applied within the studies, and by variation in patient characteristics within and between studies. Results for uveal melanoma and choroidal melanoma suggest favorable survival, with, however, significant rates of side effects. Results for choroidal hemangioma and AMD did not reveal beneficial effects from proton radiation. CONCLUSION: : There is limited evidence on the effectiveness and safety of proton radiation due to the lack of well-designed and well-reported studies. There is a need to lift evidence on proton therapy to a higher level by performing dose-finding randomized controlled trials (RCTs), comparative studies of proton radiation versus standard given alternatives and prospective case studies enrolling only patients treated with up-to-date techniques, allowing extrapolation of results to similar patient groups.
Resumo:
PURPOSE: To report the clinical experience with external beam radiotherapy (RT) for AIDS-related lymphoma (ARL) with or without the involvement of the central nervous system (CNS) in HIV-infected patients. PATIENTS AND METHODS: Clinical outcome of 24 HIV-seropositive patients with ARL treated with RT from 1995 to 2004 was reviewed, testing factors associated with outcome. RESULTS: After 1 and 5 years, the overall survival was 65% and 35%, respectively. The mean RT dose was 31 Gy after normalization to fractions of daily 2 Gy (range, 7.8-47.2 Gy). Radiotherapy dose was associated with survival in univariate (P = .04) and multivariate analysis (P = .01). Other factors in univariate analysis associated with outcome were viral load (VL), highly active antiretroviral therapy (HAART), ARL stage, and CNS involvement. Patients with CNS involvement achieved complete response in 46% and improved clinical performance was seen in 73%. CONCLUSIONS: After chemotherapy, RT in combination with HAART is highly active, and RT should be encouraged especially after suboptimal responses to induction treatment.
Resumo:
The detection rate of pulmonary emboli (PE) with computed tomography angiography (CTA) using either a standard or a low-dose protocol, combining reduced radiation exposure and iodine delivery rate, was retrospectively analyzed in a matched cohort of 120 patients.
Resumo:
In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.