126 resultados para Puce exon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rosette-forming glioneuronal tumor (RGNT) is a recently introduced, indolent neoplasm composed of diminutive circular aggregates of neurocytic-like cells on a noninfiltrative astrocytic background, typically located in the cerebellar midline The traded concept of RGNT being derived from site-specific periventricular precursors may be questioned in the face of extracerebellar examples as well as ones occurring in combination with other representatives of the glioneuronal family. We describe a hitherto not documented example of asymptomatic RGNT discovered during autopsy of a 74-year-old male. Located in the tuberal vermis, this lesion of 6 mm diameter consisted of several microscopic nests of what were felt to represent nascent stages of RGNT, all of them centered on the internal granular layer, and ranging from mucoid dehiscences thereof to fully evolved - if small - tumor foci. Molecular genetic analysis revealed a missense mutation in Exon 20 of the PIK3CA gene involving an A→G transition at Nucleotide 3140. On the other hand, neither codeletion of chromosomes 1p/19q nor pathogenic mutations of IDH1/2 were detected. By analogy with in situ paradigms in other organs, we propose that this tumor is likely to have arisen from the internal granular layer, rather than the plate of the 4th ventricle. A suggestive departure from the wholesale argument of "undifferentiated precursors", this finding also indirectly indicates that a subset of non-classical RGNTs - in particular extracerebellar examples, whose origin cannot be mechanistically accounted for by either of the above structures - may possibly reflect an instance of phenotypic convergence, rather than a lineage-restricted entity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upshaw-Schulman syndrome (USS) is due to severe congenital deficiency of von Willebrand factor (VWF)-cleaving protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 domains, nr 13) activity resulting in the presence of unusually large forms of VWF in the circulation, causing intravascular platelet clumping and thrombotic microangiopathy. Our patient, a 26-year-old man, had attacks of thrombotic thrombocytopenic purpura (TTP) with thrombocytopenia and a urine dipstick positive for hemoglobin (4+), often as the only sign of hemolytic activity. He had ADAMTS13 activity of <1% of normal plasma without the presence of inhibitors of ADAMTS13. ADAMTS13 deficiency was caused by two new mutations of the ADAMTS13 gene: a deletion of a single nucleotide in exon17 (c. 2042 delA) leading to a frameshift (K681C fs X16), and a missense mutation in exon 25 (c.3368G>A) leading to p.R1123H. This case report confirms the importance of the analysis of the ADAMTS13 activity and its inhibitor in patients who have episodes of TTP, with a very low platelet count and sometimes without the classic biochemical signs of hemolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiency of coagulation factor XIII (FXIII) belongs to the rare bleeding disorders and its incidence is higher in populations with consanguineous marriages. The aims of this study were to characterize patients and relatives from seven families with suspected FXIII deficiency from Pakistan and to identify the underlying mutations. As a first indicator of FXIII deficiency, a 5M urea clot solubility test was used. Plasma FXIII A- and B-subunit antigen levels were determined by ELISA. FXIII activity was measured with an incorporation assay. Sequencing of all exons and intron/exon boundaries of F13A was performed, and a novel splice site defect was confirmed by RT-PCR analysis. Genetic analysis revealed six different mutations in the F13A gene. Two splice site mutations were detected, a novel c.1460+1G>A mutation in the first nucleotide of intron 11 and a previously reported c.2045G>A mutation in the last nucleotide of exon 14. Neither of them was expressed at protein level. A novel nonsense mutation in exon 4, c.567T>A, p.Cys188X, was identified, leading in homozygous form to severe FXIII deficiency. Two novel missense mutations were found in exons 8 and 9, c.1040C>A, p.Ala346Asp and c.1126T>C, p.Trp375Arg, and a previously reported missense mutation in exon 10, c.1241C>T, p.Ser413Leu. All patients homozygous for these missense mutations presented with severe FXIII deficiency. We have analysed a cohort of 27 individuals and reported four novel mutations leading to congenital FXIII deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Several monogenic defects have been reported to be associated with idiopathic short stature. Focusing on growth hormone receptor (GHR)-gene alterations, the heterozygosity of the same gene defect may be associated with a range of growth deficits. We found a heterozygous mutation (V144I) within exon 6 of the GHR gene in a patient with a low level of insulin-like growth factor I (IGF-I), normal level of GH, and severe short stature. Despite the lack of statistical difference, an overall tendency for reduced wt-GH-induction of GHR activation and Jak/Stat signalling in cells transiently expressing GHR-V144I alone or co-expressing wt-GHR compared to cells expressing only wt-GHR was found when GH doses were increased. Our results suggest that, although GHR sequence variants are responsible for some functional alterations commonly observed in children with idiopathic short stature, these changes may not explain all the height deficits observed in these subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear antisense properties of a series of tricyclo(tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence and dose dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2‘M concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction of CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA-oligonucleotides. The obtained results confirm the power of tricyclo-DNA for nuclear antisense applications. Morover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the detection of expressed sequence tags that are similar to known galactosyltransferase sequences, we have isolated three novel UDP-galactose:beta-N-acetylglucosamine beta1, 3-galactosyltransferase (beta3GalT) genes from a mouse genomic library. The three genes, named beta3GalT-I, -II, and -III, encode type II transmembrane proteins of 326, 422, and 331 amino acids, respectively. The three proteins constitute a distinct subfamily as they do not share any sequence identity with other eucaryotic galactosyltransferases. Also, the entire protein-coding region of the three beta3GalT genes was contained in a single exon, which contrasts with the genomic organization of the beta1,4- and alpha1, 3-galactosyltransferase genes. The three beta3GalT genes were mainly expressed in brain tissue. The expression of the full-length murine genes as recombinant baculoviruses in insect cells revealed that the beta3GalT enzymes share the same acceptor specificity for beta-linked GlcNAc, although they differ in their Km for this acceptor and the donor UDP-Gal. The identification of beta3GalT genes emphasizes the structural diversity present in the galactosyltransferase gene family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genome-wide siRNA screen against host factors that affect the infection of Semliki Forest virus (SFV), a positive-strand (+)RNA virus, revealed that components of the nonsense-mediated mRNA decay (NMD) pathway restrict early, post-entry steps of the infection cycle. In HeLa cells and primary human fibroblasts, knockdown of UPF1, SMG5 and SMG7 leads to increased levels of viral proteins and RNA and to higher titers of released virus. The inhibitory effect of NMD was stronger when the efficiency of virus replication was impaired by mutations or deletions in the replicase proteins. Accordingly, impairing NMD resulted in a more than 20-fold increased production of these attenuated viruses. Our data suggest that intrinsic features of genomic and sub-genomic viral mRNAs, most likely the extended 3'-UTR length, make them susceptible to NMD. The fact that SFV replication is entirely cytoplasmic strongly suggests that degradation of the viral RNA occurs through the exon junction complex (EJC)-independent mode of NMD. Collectively, our findings uncover a new biological function for NMD as an intrinsic barrier to the translation of early viral proteins and the amplification of (+)RNA viruses in animal cells. Thus, in addition to its role in mRNA surveillance and post-transcriptional gene regulation, NMD also contributes to protect cells from RNA viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite over 30 years of research, the molecular mechanisms of nonsense-mediated mRNA decay (NMD) are still not well understood. NMD appears to exist in most eukaryotes and is intensively studied in S. cerevisiae, C. elegans, D. melanogaster and in mammalian cells. Current evidence suggests that the core of NMD – involving UPF1, UPF2 and UPF3 – is evolutionarily conserved, but that different species may have evolved slightly different ways to identify target mRNAs for NMD and to degrade them. Our lab has shown that the exon junction complex (EJC) is not absolutely required for NMD in human cells (Bühler et al., NSMB 2006) and that it is neither restricted to CBP80-bound mRNAs as classical models claim (Rufener & Mühlemann, NSMB 2013). Together with the finding that long 3’ UTRs often are an NMD-inducing feature (Eberle et al, PLoS Biol 2008; Yepiskoposyan et al., RNA 2011), our data is consistent with much of the data from other species and hence has led to a “unified” working model for NMD (Stalder & Mühlemann, Trends Cell Biol 2008; Schweingruber et al., Biochim Biophys Acta 2013). Our recent iCLIP experiments with endogenous UPF1 indicate that UPF1 binds mRNAs indiscriminately with respect to being an NMD target or not before they engage with ribosomes (Zünd et al., NSMB 2013). After onset of translation, UPF1 is cleared from the coding region but remains bound to the 3’ UTR of mRNAs. Why this 3’ UTR-associated in some cases induces NMD and in others not is currently being investigated and not yet understood. Following assembly of a phospho-UPF1-containing NMD complex, decay adaptors (SMG5, SMG7, PNRC2) and/or the endonuclease SMG6 are recruited. While the latter cleaves the mRNA in the vicinity of the termination codon, the former proteins induce deadenylation, decapping and exonucleolytic degradation of the mRNA. In my talk, I will give an overview about the latest developments in NMD – with a focus on our own work – and try to integrate the bits and pieces into a somewhat coherent working model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inherited polyneuropathy (PN) observed in Leonberger dogs has clinical similarities to a genetically heterogeneous group of peripheral neuropathies termed Charcot-Marie-Tooth (CMT) disease in humans. The Leonberger disorder is a severe, juvenile-onset, chronic, progressive, and mixed PN, characterized by exercise intolerance, gait abnormalities and muscle atrophy of the pelvic limbs, as well as inspiratory stridor and dyspnea. We mapped a PN locus in Leonbergers to a 250 kb region on canine chromosome 16 (Praw = 1.16×10-10, Pgenome, corrected = 0.006) utilizing a high-density SNP array. Within this interval is the ARHGEF10 gene, a member of the rho family of GTPases known to be involved in neuronal growth and axonal migration, and implicated in human hypomyelination. ARHGEF10 sequencing identified a 10 bp deletion in affected dogs that removes four nucleotides from the 3'-end of exon 17 and six nucleotides from the 5'-end of intron 17 (c.1955_1958+6delCACGGTGAGC). This eliminates the 3'-splice junction of exon 17, creates an alternate splice site immediately downstream in which the processed mRNA contains a frame shift, and generates a premature stop codon predicted to truncate approximately 50% of the protein. Homozygosity for the deletion was highly associated with the severe juvenile-onset PN phenotype in both Leonberger and Saint Bernard dogs. The overall clinical picture of PN in these breeds, and the effects of sex and heterozygosity of the ARHGEF10 deletion, are less clear due to the likely presence of other forms of PN with variable ages of onset and severity of clinical signs. This is the first documented severe polyneuropathy associated with a mutation in ARHGEF10 in any species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 2013 seven Italian Tyrolean Grey calves were born with abnormally short limbs. Detailed clinical and pathological examination revealed similarities to chondrodysplastic dwarfism. Pedigree analysis showed a common founder, assuming autosomal monogenic recessive transmission of the defective allele. A positional cloning approach combining genome wide association and homozygosity mapping identified a single 1.6 Mb genomic region on BTA 6 that was associated with the disease. Whole genome re-sequencing of an affected calf revealed a single candidate causal mutation in the Ellis van Creveld syndrome 2 (EVC2) gene. This gene is known to be associated with chondrodysplastic dwarfism in Japanese Brown cattle, and dwarfism, abnormal nails and teeth, and dysostosis in humans with Ellis-van Creveld syndrome. Sanger sequencing confirmed the presence of a 2 bp deletion in exon 19 (c.2993_2994ACdel) that led to a premature stop codon in the coding sequence of bovine EVC2, and was concordant with the recessive pattern of inheritance in affected and carrier animals. This loss of function mutation confirms the important role of EVC2 in bone development. Genetic testing can now be used to eliminate this form of chondrodysplastic dwarfism from Tyrolean Grey cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the molecular characterization of a microdeletion of approximately 2.5 Mb at 2p11.2 in a female baby with left congenital aural atresia, microtia, and ipsilateral internal carotid artery agenesis. The deletion was characterized by fluorescence in situ hybridization, array comparative genomic hybridization, and whole genome re-sequencing. Among the genes present in the deleted region, we focused our attention on the FOXI3 gene. Foxi3 is a member of the Foxi class of Forkhead transcription factors. In mouse, chicken and zebrafish Foxi3 homologues are expressed in the ectoderm and endoderm giving rise to elements of the jaw as well as external, middle and inner ear. Homozygous Foxi3-/- mice have recently been generated and show a complete absence of the inner, middle, and external ears as well as severe defects in the jaw and palate. Recently, a 7-bp duplication within exon 1 of FOXI3 that produces a frameshift and a premature stop codon was found in hairless dogs. Mild malformations of the outer auditory canal (closed ear canal) and ear lobe have also been noted in a fraction of FOXI3 heterozygote Peruvian hairless dogs. Based on the phenotypes of Foxi3 mutant animals, we propose that FOXI3 may be responsible for the phenotypic features of our patient. Further characterization of the genomic region and the analysis of similar patients may help to demonstrate this point. © 2015 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED We report on our patient (case 2) who experienced a first acute episode of thrombotic thrombocytopenic purpura (TTP) at the age of 19 years during her first pregnancy in 1976 which ended in a spontaneous abortion in the 30th gestational week. Treatment with red blood cell concentrates was implemented and splenectomy was performed. After having suffered from several TTP episodes in 1977, possibly mitigated by acetylsalicylic acid therapy, an interruption and sterilization were performed in 1980 in her second pregnancy thereby avoiding another disease flare-up. Her elder sister (case 1) had been diagnosed with TTP in 1974, also during her first pregnancy. She died in 1977 during her second pregnancy from a second acute TTP episode. DIAGNOSIS In 2013 a severe ADAMTS13 deficiency of <10% without detectable ADAMTS13 inhibitor was repeatedly found. Investigation of the ADAMTS13 gene showed that the severe ADAMTS13 deficiency was caused by compound heterozygous ADAMTS13 mutations: a premature stop codon in exon 2 (p.Q44X), and a missense mutation in exon 24 (p.R1060W) associated with low but measurable ADAMTS13 activity. CONCLUSION Genetic analysis of the ADAMTS13 gene is important in TTP patients of all ages if an ADAMTS13 inhibitor has been excluded.