148 resultados para Prostate -- Cancer
Resumo:
Background The identification of additional prognostic markers to improve risk stratification and to avoid overtreatment is one of the most urgent clinical needs in prostate cancer (PCa). MicroRNAs, being important regulators of gene expression, are promising biomarkers in various cancer entities, though the impact as prognostic predictors in PCa is poorly understood. The aim of this study was to identify specific miRNAs as potential prognostic markers in high-risk PCa and to validate their clinical impact. Methodology and Principal Findings We performed miRNA-microarray analysis in a high-risk PCa study group selected by their clinical outcome (clinical progression free survival (CPFS) vs. clinical failure (CF)). We identified seven candidate miRNAs (let-7a/b/c, miR-515-3p/5p, -181b, -146b, and -361) that showed differential expression between both groups. Further qRT-PCR analysis revealed down-regulation of members of the let-7 family in the majority of a large, well-characterized high-risk PCa cohort (n = 98). Expression of let-7a/b/and -c was correlated to clinical outcome parameters of this group. While let-7a showed no association or correlation with clinical relevant data, let-7b and let-7c were associated with CF in PCa patients and functioned partially as independent prognostic marker. Validation of the data using an independent high-risk study cohort revealed that let-7b, but not let-7c, has impact as an independent prognostic marker for BCR and CF. Furthermore, we identified HMGA1, a non-histone protein, as a new target of let-7b and found correlation of let-7b down-regulation with HMGA1 over-expression in primary PCa samples. Conclusion Our findings define a distinct miRNA expression profile in PCa cases with early CF and identified let-7b as prognostic biomarker in high-risk PCa. This study highlights the importance of let-7b as tumor suppressor miRNA in high-risk PCa and presents a basis to improve individual therapy for high-risk PCa patients.
Resumo:
BACKGROUND Trials assessing the benefit of immediate androgen-deprivation therapy (ADT) for treating prostate cancer (PCa) have often done so based on differences in detectable prostate-specific antigen (PSA) relapse or metastatic disease rates at a specific time after randomization. OBJECTIVE Based on the long-term results of European Organization for Research and Treatment of Cancer (EORTC) trial 30891, we questioned if differences in time to progression predict for survival differences. DESIGN, SETTING, AND PARTICIPANTS EORTC trial 30891 compared immediate ADT (n=492) with orchiectomy or luteinizing hormone-releasing hormone analog with deferred ADT (n=493) initiated upon symptomatic disease progression or life-threatening complications in randomly assigned T0-4 N0-2 M0 PCa patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Time to first objective progression (documented metastases, ureteric obstruction, not PSA rise) and time to objective castration-resistant progressive disease were compared as well as PCa mortality and overall survival. RESULTS AND LIMITATIONS After a median of 12.8 yr, 769 of the 985 patients had died (78%), 269 of PCa (27%). For patients receiving deferred ADT, the overall treatment time was 31% of that for patients on immediate ADT. Deferred ADT was significantly worse than immediate ADT for time to first objective disease progression (p<0.0001; 10-yr progression rates 42% vs 30%). However, time to objective castration-resistant disease after deferred ADT did not differ significantly (p=0.42) from that after immediate ADT. In addition, PCa mortality did not differ significantly, except in patients with aggressive PCa resulting in death within 3-5 yr after diagnosis. Deferred ADT was inferior to immediate ADT in terms of overall survival (hazard ratio: 1.21; 95% confidence interval, 1.05-1.39; p [noninferiority]=0.72, p [difference] = 0.0085). CONCLUSIONS This study shows that if hormonal manipulation is used at different times during the disease course, differences in time to first disease progression cannot predict differences in disease-specific survival. A deferred ADT policy may substantially reduce the time on treatment, but it is not suitable for patients with rapidly progressing disease.
Resumo:
PURPOSE High aldehyde dehydrogenase (ALDH) has been suggested to selectively mark cells with high tumorigenic potential in established prostate cancer cell lines. However, the existence of cells with high ALDH activity (ALDH(bright)) in primary prostate cancer specimens has not been shown so far. We investigated the presence, phenotype, and clinical significance of ALDH(bright) populations in clinical prostate cancer specimens. EXPERIMENTAL DESIGN We used ALDEFLUOR technology and fluorescence-activated cell-sorting (FACS) staining to identify and characterize ALDH(bright) populations in cells freshly isolated from clinical prostate cancer specimens. Expression of genes encoding ALDH-specific isoforms was evaluated by quantitative real-time PCR in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer tissues. ALDH1A1-specific expression and prognostic significance were assessed by staining two tissue microarrays that included more than 500 samples of BPH, prostatic intraepithelial neoplasia (PIN), and multistage prostate cancer. RESULTS ALDH(bright) cells were detectable in freshly excised prostate cancer specimens (n = 39) and were mainly included within the EpCAM((+)) and Trop2((+)) cell populations. Although several ALDH isoforms were expressed to high extents in prostate cancer, only ALDH1A1 gene expression significantly correlated with ALDH activity (P < 0.01) and was increased in cancers with high Gleason scores (P = 0.03). Most importantly, ALDH1A1 protein was expressed significantly more frequently and at higher levels in advanced-stage than in low-stage prostate cancer and BPH. Notably, ALDH1A1 positivity was associated with poor survival (P = 0.02) in hormone-naïve patients. CONCLUSIONS Our data indicate that ALDH contributes to the identification of subsets of prostate cancer cells of potentially high clinical relevance.
Resumo:
Background A beneficial effect of regional anesthesia on cancer related outcome in various solid tumors has been proposed. The data on prostate cancer is conflicting and reports on long-term cancer specific survival are lacking. Methods In a retrospective, single-center study, outcomes of 148 consecutive patients with locally advanced prostate cancer pT3/4 who underwent retropubic radical prostatectomy (RRP) with general anesthesia combined with intra- and postoperative epidural analgesia (n=67) or with postoperative ketorolac-morphine analgesia (n=81) were reviewed. The median observation time was 14.00 years (range 10.87-17.75 yrs). Biochemical recurrence (BCR)-free, local and distant recurrence-free, cancer-specific, and overall survival were estimated using the Kaplan-Meier technique. Multivariate Cox proportional-hazards regression models were used to analyze clinicopathologic variables associated with disease progression and death. Results The survival estimates for BCR-free, local and distant recurrence-free, cancer-specific survival and overall survival did not differ between the two groups (P=0.64, P=0.75, P=0.18, P=0.32 and P=0.07). For both groups, higher preoperative PSA (hazard ratio (HR) 1.02, 95% confidence interval (CI) 1.01-1.02, P<0.0001), increased specimen Gleason score (HR 1.24, 95% CI 1.06-1.46, P=0.007) and positive nodal status (HR 1.66, 95% CI 1.03-2.67, P=0.04) were associated with higher risk of BCR. Increased specimen Gleason score predicted death from prostate cancer (HR 2.46, 95% CI 1.65-3.68, P<0.0001). Conclusions General anaesthesia combined with epidural analgesia did not reduce the risk of cancer progression or improve survival after RRP for prostate cancer in this group of patients at high risk for disease progression with a median observation time of 14.00 yrs.
Resumo:
In this review, the role of surgery in patients with adverse tumor characteristics and a high risk of tumor progression are discussed. In the current PSA era the proportion of patients presenting with high risk prostate cancer (PCa) is estimated to be between 15% and 25% with a 10-year cancer specific survival in the range of 80-90% for those receiving active local treatment. The treatment of high risk prostate cancer is a contemporary challenge. Surgery in this group is gaining popularity since 10-year cancer specific survival data of over 90% has been described. Radical prostatectomy should be combined with extended lymphadenectomy. Adjuvant or salvage therapies may be needed in more than half of patients , guided by pathologic findings and postoperative PSA. Unfortunately there are no randomized controlled trials comparing radical prostatectomy to radiotherapy and no single treatment can be universally recommended. This group of high risk prostate cancer patients should be considered a multi-disciplinary challenge; however, for the properly selected patient, radical prostatectomy either as initial or as the only therapy can be considered an excellent treatment.
Resumo:
The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.
Resumo:
Patients with advanced prostate cancer (PC) are usually treated with androgen withdrawal. While this therapy is initially effective, nearly all PCs become refractory to it. As hormone receptors play a crucial role in this process, we constructed a tissue microarray consisting of PC samples from 107 hormone-naïve (HN) and 101 castration-resistant (CR) PC patients and analyzed the androgen receptor (AR) gene copy number and the protein expression profiles of AR, Serin210-phosphorylated AR (pAR(210)), estrogen receptor (ER)β, ERα and the proliferation marker Ki67. The amplification of the AR gene was virtually restricted to CR PC and was significantly associated with increased AR protein expression (P<0.0001) and higher tumor cell proliferation (P=0.001). Strong AR expression was observed in a subgroup of HN PC patients with an adverse prognosis. In contrast, the absence of AR expression in CR PC was significantly associated with a poor overall survival. While pAR(210) was predominantly found in CR PC patients (P<0.0001), pAR(210) positivity was observed in a subgroup of HN PC patients with a poor survival (P<0.05). Epithelial ERα expression was restricted to CR PC cells (9%). ERβ protein expression was found in 38% of both HN and CR PCs, but was elevated in matched CR PC specimens. Similar to pAR(210), the presence of ERβ in HN patients was significantly associated with an adverse prognosis (P<0.005). Our results strongly suggest a major role for pAR(210) and ERβ in HN PC. The expression of these markers might be directly involved in CR tumor growth.
Resumo:
Multidrug resistance protein 4 (MRP4) is a transmembrane transport protein found in many cell types and is involved in substrate-specific transport of endogenous and exogenous substrates. Recently, it has shown to be expressed in prostate cancer cell lines and to be among the most commonly upregulated transcripts in prostate cancer, although a comprehensive expression analysis is lacking so far. We aimed to investigate its expression by immunohistochemistry in a larger cohort of neoplastic and nonneoplastic prostate tissues (n = 441) and to correlate its expression with clinicopathological parameters including PSA-free survival times and molecular correlates of androgen signaling (androgen receptor (AR), prostate-specific antigen (PSA), and forkhead box A (FoxA)). MRP4 is widely expressed in benign and neoplastic prostate epithelia, but its expression gradually decreases during tumor progression towards castrate-resistant disease. Concordantly, it correlated with conventional prognosticators of disease progression and-within the group of androgen-dependent tumors-with AR and FoxA expression. Moreover, lower levels of MRP4 expression were associated with shorter PSA relapse-free survival times in the androgen-dependent group. In benign tissues, we found zone-dependent differences of MRP4 expression, with the highest levels in the peripheral and central zones. Although MRP4 is known to be regulated in prostate cancer, this study is the first to demonstrate a gradual downregulation of MRP4 protein during malignant tumor progression and a prognostic value of this loss of expression.
Resumo:
UNLABELLED The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer and is an attractive target for radionuclide therapy. In addition, inhibition of the protein kinase mammalian target of rapamycin (mTOR) has been shown to sensitize various cancer cells to the effects of radiotherapy. METHODS To determine the effect of treatment with rapamycin and radiotherapy with a novel (177)Lu-labeled GRPr antagonist ((177)Lu-RM2, BAY 1017858) alone and in combination, in vitro and in vivo studies were performed using the human PC-3 prostate cancer cell line. PC-3 cell proliferation and (177)Lu-RM2 uptake after treatment with rapamycin were assessed in vitro. To determine the influence of rapamycin on (177)Lu-RM2 tumor uptake, in vivo small-animal PET studies with (68)Ga-RM2 were performed after treatment with rapamycin. To study the efficacy of (177)Lu-RM2 in vivo, mice with subcutaneous PC-3 tumors were treated with (177)Lu-RM2 alone or after pretreatment with rapamycin. RESULTS Stable expression of GRPr was maintained after rapamycin treatment with doses up to 4 mg/kg in vivo. Monotherapy with (177)Lu-RM2 at higher doses (72 and 144 MBq) was effective in inducing complete tumor remission in 60% of treated mice. Treatment with 37 MBq of (177)Lu-RM2 and rapamycin in combination led to significantly longer survival than with either agent alone. No treatment-related toxicity was observed. CONCLUSION Radiotherapy using a (177)Lu-labeled GRPr antagonist alone or in combination with rapamycin was efficacious in inhibiting in vivo tumor growth and may be a promising strategy for treatment of prostate cancer.