137 resultados para Nerve trajectory
Resumo:
Abnormal expression of heat shock proteins (HSPs) has been observed in many human neoplasms and such expression has prognostic, predictive and therapeutic implications. The aim of this study was to evaluate immunohistochemically the expression of HSP 27, HSP 32 and HSP 90 in normal canine peripheral nerves and in four benign and 15 malignant canine peripheral nerve sheath tumours (PNSTs). In normal nerve, all of the HSPs were detected in axons, epineurial fibroblasts and scattered Schwann cell bodies. Cytoplasmic expression of HSP 27 was more widespread and intense in benign PNSTs compared with malignant PNSTs (P <0.05). Widespread and intense nuclear expression of HSP 32 was also associated with benign tumours (P <0.01), while high HSP 90 immunoreactivity was detected in all tumours, suggesting that HSP 90 might represent a new therapeutic target.
Resumo:
The objective of this prospective experimental cadaveric study was to develop an ultrasound-guided technique to perform an anaesthetic pudendal nerve block in male cats. Fifteen fresh cadavers were used for this trial. A detailed anatomical dissection was performed on one cat in order to scrutinise the pudendal nerve and its ramifications. In a second step, the cadavers of six cats were used to test three different ultrasonographic approaches to the pudendal nerve: the deep dorso-lateral, the superficial dorso-lateral and the median transperineal. Although none of the approaches allowed direct ultrasonographical identification of the pudendal nerve branches, the deep dorso-lateral was found to be the most advantageous one in terms of practicability and ability to identify useful and reliable landmarks. Based on these findings, the deep dorso-lateral approach was selected as technique of choice for tracer injections (0.1 ml 1% methylene blue injected bilaterally) in six cat cadavers distinct from those used for the ultrasonographical study. Anatomical dissection revealed a homogeneous spread of the tracer around the pudendal nerve sensory branches in all six cadavers. Finally, computed tomography was performed in two additional cadavers after injection of 0.3 ml/kg (0.15 ml/kg per each injection sites, left and right) contrast medium through the deep dorso-lateral approach in order to obtain a model of volume distribution applicable to local anaesthetics. Our findings in cat cadavers indicate that ultrasound-guided pudendal nerve block is feasible and could be proposed to provide peri-operative analgesia in clinical patients undergoing perineal urethrostomy.
Resumo:
The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.
Resumo:
Purpose The sedimentation sign (SedSign) has been shown to discriminate well between selected patients with and without lumbar spinal stenosis (LSS). The purpose of this study was to compare the pressure values associated with LSS versus non-LSS and discuss whether a positive SedSign may be related to increased epidural pressure at the level of the stenosis. Methods We measured the intraoperative epidural pressure in five patients without LSS and a negative SedSign, and in five patients with LSS and a positive SedSign using a Codman TM catheter in prone position under radioscopy. Results Patients with a negative SedSign had a median epidural pressure of 9 mmHg independent of the measurement location. Breath and pulse-synchronous waves accounted for 1–3 mmHg. In patients with monosegmental LSS and a positive SedSign, the epidural pressure above and below the stenosis was similar (median 8–9 mmHg). At the level of the stenosis the median epidural pressure was 22 mmHg. A breath and pulse-synchronous wave was present cranial to the stenosis, but absent below. These findings were independent of the cross-sectional area of the spinal canal at the level of the stenosis. Conclusions Patients with LSS have an increased epidural pressure at the level of the stenosis and altered pressure wave characteristics below. We argue that the absence of sedimentation of lumbar nerve roots to the dorsal part of the dural sac in supine position may be due to tethering of affected nerve roots at the level of the stenosis.
Resumo:
Our understanding of Earth's carbon climate system depends critically upon interactions between rising atmospheric CO2, changing land use, and nitrogen limitation on vegetation growth. Using a global land model, we show how these factors interact locally to generate the global land carbon sink over the past 200 years. Nitrogen constraints were alleviated by N2 fixation in the tropics and by atmospheric nitrogen deposition in extratropical regions. Nonlinear interactions between land use change and land carbon and nitrogen cycling originated from three major mechanisms: (i) a sink foregone that would have occurred without land use conversion; (ii) an accelerated response of secondary vegetation to CO2 and nitrogen, and (iii) a compounded clearance loss from deforestation. Over time, these nonlinear effects have become increasingly important and reduce the present-day net carbon sink by ~40% or 0.4 PgC yr−1.
Resumo:
Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.
Resumo:
The vulvar intraepithelial neoplasia (VIN) is a rare chronic skin condition that may progress to an invasive carcinoma of the vulva. Major issues affecting women's health were occurring symptoms, negative influences on sexuality, uncertainty concerning the illness progression and changes in the body image. Despite this, there is little known about the lived experiences of the illness trajectory. Therefore, the aim of this study was to describe the experiences of women with VIN during the illness trajectory. In a secondary data analysis of the foregoing qualitative study we analysed eight narrative interviews with women with VIN by using thematic analysis in combination with critical hermeneutics. Central for these women during their course of illness was a sense of "Hope and Fear". This constitutive pattern reflects the fear of recurrence but also the trust in healing. The eight narratives showed women's experiences during their course of illness occurred in five phases: "there is something unknown"; "one knows, what IT is"; "IT is treated and should heal"; "IT has effects on daily life"; "meanwhile it works". Women's experiences were particularly influenced by the feeling of "embarrassment" and by "dealing with professionals". Current care seems to lack adequate support for women with VIN to manage these phases. We suggest, based on our study and the international literature, that new models of counselling and providing information need to be developed and evaluated.
Resumo:
STATE OF THE ART The proximal median nerve compression syndrome includes the pronator teres and the Kiloh-Nevin syndrome. This article presents a new surgical technique of endoscopic assisted median nerve decompression. MATERIAL AND SURGICAL TECHNIQUE Endoscopic scissor decompression of the median nerve is always performed under plexus anaesthesia. It includes 6 key steps documented in this article. We review the indications and limitations of the surgical technique. RESULTS Since 2011, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We also review the limitations of the technique and its potential for future development. CONCLUSION Although clinical results after endoscopic assisted decompression of the median nerve appear excellent they still need to be compared with conventional techniques. Clinical studies are likely to develop primarily due to the mini-invasive nature of this new surgical technique.
Resumo:
OBJECTIVE To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. STUDY DESIGN Prospective clinical trial. ANIMALS Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. METHODS Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. RESULTS The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. CONCLUSION AND CLINICAL RELEVANCE The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors.
Resumo:
This article describes the clinical applicability of a nerve stimulator–guided technique, previously described in dogs, to block the sciatic and the femoral nerves in 4 pet rabbits (Oryctolagus cuniculus) undergoing hind limb surgeries. Preanesthetic intramuscular doses of medetomidine (0.08 mg/kg), ketamine (15 mg/kg), and buprenorphine (0.03 mg/kg) were administered to the rabbit patients. The rabbits were intubated and general anesthesia was maintained using isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine at a volume of 0.05 mL/kg/nerve. Sciatic-femoral block was feasible in rabbits, and the motoric responses following electrical stimulation of both nerves were consistent with those reported in dogs after successful nerve location. Iatrogenic complications, namely nerve damage and local anesthetic toxicity, did not occur. Based on these results, the authors conclude that the sciatic-femoral nerve block described in dogs can be safely performed in rabbits. Clinical trials are required to assess the analgesic efficacy of the combined sciatic-femoral nerve block in rabbits as a part of multimodal pain management.
Resumo:
A major component of minimally invasive cochlear implantation is atraumatic scala tympani (ST) placement of the electrode array. This work reports on a semiautomatic planning paradigm that uses anatomical landmarks and cochlear surface models for cochleostomy target and insertion trajectory computation. The method was validated in a human whole head cadaver model (n = 10 ears). Cochleostomy targets were generated from an automated script and used for consecutive planning of a direct cochlear access (DCA) drill trajectory from the mastoid surface to the inner ear. An image-guided robotic system was used to perform both, DCA and cochleostomy drilling. Nine of 10 implanted specimens showed complete ST placement. One case of scala vestibuli insertion occurred due to a registration/drilling error of 0.79 mm. The presented approach indicates that a safe cochleostomy target and insertion trajectory can be planned using conventional clinical imaging modalities, which lack sufficient resolution to identify the basilar membrane.
Resumo:
BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.