157 resultados para National American Woman Suffrage Association
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
In addition to plasma metabolites and hormones participating as humoral signals in the control of feed intake, oxidative metabolic processes in peripheral organs also generate signals to terminate feeding. Although the degree of oxidation over longer periods is relatively constant, recent work suggests that the periprandial pattern of fuel oxidation is involved in regulating feeding behavior in the bovine. However, the association between periprandial oxidative metabolism and feed intake of dairy cows has not yet been studied. Therefore, the aim of this study was to elucidate possible associations existing between single feed intake events and whole-body net fat and net carbohydrate oxidation as well as their relation to plasma metabolite concentrations. To this end, 4 late-lactating cows equipped with jugular catheters were kept in respiratory chambers with continuous and simultaneous recording of gas exchange and feed intake. Animals were fed ad libitum (AL) for 24h and then feed restricted (RE) to 50% of the previous AL intake for a further 24h. Blood samples were collected hourly to analyze β-hydroxybutyrate (BHBA), glucose, nonesterified fatty acids (NEFA), insulin, and acylated ghrelin concentrations. Cross-correlation analysis revealed an offset ranging between 30 and 42 min between the maximum of a feed intake event and the lowest level of postprandial net fat oxidation (FOX(net)) and the maximum level of postprandial net carbohydrate oxidation (COX(net)), respectively. During the AL period, FOX(net) did not increase above -0.2g/min, whereas COX(net) did not decrease below 6g/min before the start of the next feed intake event. A strong inverse cross-correlation was obtained between COX(net) and plasma glucose concentration. Direct cross-correlations were observed between COXnet and insulin, between heat production and BHBA, between insulin and glucose, and between BHBA and ghrelin. We found no cross-correlation between FOX(net) and NEFA. During RE, FOX(net) increased with an exponential slope, exceeded the threshold of -0.2g/min as indicated by increasing plasma NEFA concentrations, and approached a maximum rate of 0.1g/min, whereas COX(net) decayed in an exponential manner, approaching a minimal COX(net) rate of about 2.5 g/min in all cows. Our novel findings suggest that, in late-lactating cows, postprandial increases in metabolic oxidative processes seem to signal suppression of feed intake, whereas preprandially an accelerated FOX(net) rate and a decelerated COX(net) rate initiate feed intake.
Resumo:
During a mammary immune response, the integrity of the blood-milk barrier is negatively affected and becomes leaky. The aim of the present study was to demonstrate the blood origin, and to investigate changes in the concentration, of various constituents including immunoglobulins in blood and milk during the early phase of lipopolysaccharide (LPS)-induced mastitis. Five lactating dairy cows received continuous β-hydroxybutyrate (BHBA) clamp infusions to maintain elevated BHBA blood concentrations (1.5 to 2.0 mmol/L) from 48 h before and 8h after LPS administration. One udder quarter was infused with 200 μg of Escherichia coli LPS. A second quarter served as control. Milk and blood samples were taken hourly for 8h postchallenge (PC). The somatic cell count in LPS-challenged quarters was increased from 4h PC to the end of the experiment compared with control quarters. In LPS-challenged quarters, l-lactate, BHBA, lactate dehydrogenase (LDH), IgG(1), and IgG(2) were increased at 3h PC and remained elevated until the end of experiment (8h PC) compared with control quarters. In addition, the optical density values in milk in a nonquantitative ELISA for antibodies directed against bluetongue virus (used as a measure of nonspecific antibody transfer; all animals were vaccinated) increased and, thus, indicates an increase in these antibodies in response to LPS treatment. l-Lactate concentration also increased in blood 2h PC and in the milk of control quarters during the experiment from 3h PC. A second experiment was conducted in vitro to investigate a possible contribution from destructed milk cells to l-lactate concentration and activity of LDH in milk. Aliquots of milk samples (n=8) were frozen (-20°C) or disrupted with ultrasound, respectively. Freeze thawing and ultrasound treatment increased LDH in milk samples, but had no effect on l-lactate concentrations. Results suggest that intramammary infusion of LPS induces a systemic response, as evidenced by an elevation of blood l-lactate concentration. The concomitant changes of all investigated components suggest that they were blood derived. However, the increase in blood components in the milk is not necessarily supportive of the mammary immune system, and likely a side effect of reduced blood-milk barrier integrity.
Resumo:
Mastitis induced by Escherichia coli is often characterized by severe clinical signs, indicating a more powerful combat of the immune system against the pathogen compared with Staphylococcus aureus infections, which are often represented by chronic and subclinical diseases. The aim of this study was to test the major pathogenic component lipopolysaccharide (LPS) from E. coli and lipoteichoic acid (LTA) from Staph. aureus for their effects on blood-milk barrier integrity and the related transfer of immunoglobulins and lactate from blood into milk. A similar somatic cell count (SCC) increase was achieved by intramammary challenge of 1 quarter of 5 cows with 20 µg of LTA, and 8 cows with 0.2 µg of LPS (maximum log SCC/mL: 7). Milk IgG(1) concentrations increased in LPS- but not in LTA-challenged quarters. Milk IgG(2) concentrations were increased in treated quarters at 3h after LPS, and 6h after LTA challenge. Higher maximum levels of IgG(2) were reached in milk of LPS-treated quarters (173 ± 58 μg/mL) than of LTA-challenged quarters (62 ± 13 μg/mL). Immunoglobulin G(1) and IgG(2) levels did not change in control quarters. l-Lactate concentrations in milk increased 4h after LPS and 5h after LTA challenge and reached higher maximum levels in LPS- (221 ± 48 mg/L) than in LTA-treated quarters (77 ± 18 mg/L). In conclusion, a mammary inflammation on a quantitatively similar level based on SCC increase achieves a more efficient transfer of blood components such as IgG(2) via the blood-milk barrier if induced by LPS from E. coli than by LTA from Staph. aureus. This pathogen-specific difference may play an important role in the cure rate of the respective intramammary infection, which is usually lower in Staph. aureus- than in E. coli-induced mastitis.
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Resumo:
Elevation of ketone bodies in dairy cows frequently occurs in early lactation, usually concomitantly with a lack of energy and glucose. The objective of this study was to induce an elevated plasma β-hydroxybutyrate (BHBA) concentration over 48 h in mid-lactating dairy cows (i.e., during a period of positive energy balance and normal glucose plasma concentrations). Effects of BHBA infusion on feed intake, metabolism, and performance were investigated. Thirteen cows were randomly assigned to 1 of 2 infusion groups, including an intravenous infusion with Na-dl-β-OH-butyrate (1.7 mol/L) to achieve a plasma concentration of 1.5 to 2.0 mmol/L of BHBA (HyperB; n=5), or an infusion of 0.9% saline solution (control; n=8). Blood was sampled before and hourly during the 48 h of infusion. In the liver, mRNA transcripts related to gluconeogenesis (pyruvate carboxylase, glucose 6-phosphatase, mitochondrial phosphoenolpyruvate carboxykinase), phosphofructokinase, pyruvate dehydrogenase complex, and fatty acid synthesis (acetyl-coenzyme A carboxylase, fatty acid synthase) were measured by real-time PCR. Glyceraldehyde-3-phosphate dehydrogenase and ubiquitin were used as housekeeping genes. Changes (difference between before and after 48-h infusion) during the infusion period were evaluated by ANOVA with treatment as fixed effect, and area under the curve of variables was calculated on the second day of experiment. The plasma BHBA concentration in HyperB cows was 1.74 ± 0.02 mmol/L (mean ± SE) compared with 0.59 ± 0.02 mmol/L for control cows. The change in feed intake, milk yield, and energy corrected milk did not differ between the 2 experimental groups. Infusion of BHBA reduced the plasma glucose concentration (3.47 ± 0.11 mmol/L) in HyperB compared with control cows (4.11 ± 0.08 mmol/L). Plasma glucagon concentration in HyperB was lower than the control group. All other variables measured in plasma were not affected by treatment. In the liver, changes in mRNA abundance for the selected genes were similar between 2 groups. Results demonstrate that intravenous infusion of BHBA decreased plasma glucose concentration in dairy cows, but this decrease could not be explained by alterations in insulin concentrations or key enzymes related to gluconeogenesis. Declined glucose concentration is likely functionally related to decreased plasma glucagon concentration.
Resumo:
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.
Resumo:
The provision of quality colostrum with a high concentration of immunoglobulins is critical for newborn calf health. Because first colostrum may be low in overall concentration to effectively reduce the risk of newborn infections, we tested equivalent milking fractions of colostrum for possible IgG differences. The objective of this study was to determine if the fractional composition of colostrum changes during the course of milking with a focus on immunoglobulins. Twenty-four Holstein and Simmental cows were milked (first colostrum) within 4h after calving. The colostrum of 1 gland per animal was assembled into 4 percentage fractions over the course of milking: 0 to 25%, 25 to 50%, 50 to 75%, and 75 to 100%. The IgG concentration among the various fractions did not change in any significant pattern. Concentration of protein, casein, lactose and somatic cell count remained the same or exhibited only minor changes during the course of fractional milking colostrum. We determined that no benefit exists in feeding any particular fraction of colostrum to the newborn.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
OBJECTIVE To determine the diagnostic value of a serologic microagglutination test (MAT) and a PCR assay on urine and blood for the diagnosis of leptospirosis in dogs with acute kidney injury (AKI). DESIGN Cross-sectional study. Animals-76 dogs with AKI in a referral hospital (2008 to 2009). PROCEDURES Dogs' leptospirosis status was defined with a paired serologic MAT against a panel of 11 Leptospira serovars as leptospirosis-associated (n = 30) or nonleptospirosis-associated AKI (12). In 34 dogs, convalescent serologic testing was not possible, and leptospirosis status was classified as undetermined. The diagnostic value of the MAT single acute or convalescent blood sample was determined in dogs in which leptospirosis status could be classified. The diagnostic value of a commercially available genus-specific PCR assay was evaluated by use of 36 blood samples and 20 urine samples. RESULTS Serologic acute testing of an acute blood sample had a specificity of 100% (95% CI, 76% to 100%), a sensitivity of 50% (33% to 67%), and an accuracy of 64% (49% to 77%). Serologic testing of a convalescent blood sample had a specificity of 92% (65% to 99%), a sensitivity of 100% (87% to 100%), and an accuracy of 98% (88% to 100%). Results of the Leptospira PCR assay were negative for all samples from dogs for which leptospirosis status could be classified. CONCLUSIONS AND CLINICAL RELEVANCE Serologic MAT results were highly accurate for diagnosis of leptospirosis in dogs, despite a low sensitivity for early diagnosis. In this referral setting of dogs pretreated with antimicrobials, testing of blood and urine samples with a commercially available genus-specific PCR assay did not improve early diagnosis.
Resumo:
OBJECTIVE To determine the frequency of and risk factors for complications associated with casts in horses. DESIGN Multicenter retrospective case series. ANIMALS 398 horses with a half-limb or full-limb cast treated at 1 of 4 hospitals. PROCEDURES Data collected from medical records included age, breed, sex, injury, limb affected, time from injury to hospital admission, surgical procedure performed, type of cast (bandage cast [BC; fiberglass tape applied over a bandage] or traditional cast [TC; fiberglass tape applied over polyurethane resin-impregnated foam]), limb position in cast (flexed, neutral, or extended), and complications. Risk factors for cast complications were identified via multiple logistic regression. RESULTS Cast complications were detected in 197 of 398 (49%) horses (18/53 [34%] horses with a BC and 179/345 [52%] horses with a TC). Of the 197 horses with complications, 152 (77%) had clinical signs of complications prior to cast removal; the most common clinical signs were increased lameness severity and visibly detectable soft tissue damage Cast sores were the most common complication (179/398 [45%] horses). Casts broke for 20 (5%) horses. Three (0.8%) horses developed a bone fracture attributable to casting Median time to detection of complications was 12 days and 8 days for horses with TCs and BCs, respectively. Complications developed in 71%, 48%, and 47% of horses with the casted limb in a flexed, neutral, and extended position, respectively. For horses with TCs, hospital, limb position in the cast, and sex were significant risk factors for development of cast complications. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that 49% of horses with a cast developed cast complications.
Resumo:
OBJECTIVE To validate use of stress MRI for evaluation of stifle joints of dogs with an intact or deficient cranial cruciate ligament (CrCL). SAMPLE 10 cadaveric stifle joints from 10 dogs. PROCEDURES A custom-made limb-holding device and a pulley system linked to a paw plate were used to apply axial compression across the stifle joint and induce cranial tibial translation with the joint in various degrees of flexion. By use of sagittal proton density-weighted MRI, CrCL-intact and deficient stifle joints were evaluated under conditions of loading stress simulating the tibial compression test or the cranial drawer test. Medial and lateral femorotibial subluxation following CrCL transection measured under a simulated tibial compression test and a cranial drawer test were compared. RESULTS By use of tibial compression test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 9.6 ± 3.7 mm and 10 ± 4.1 mm, respectively. By use of cranial drawer test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 8.3 ± 3.3 mm and 9.5 ± 3.5 mm, respectively. No significant difference in femorotibial subluxation was found between stress MRI techniques. Femorotibial subluxation elicited by use of the cranial drawer test was greater in the lateral than in the medial compartment. CONCLUSIONS AND CLINICAL RELEVANCE Both stress techniques induced stifle joint subluxation following CrCL transection that was measurable by use of MRI, suggesting that both methods may be further evaluated for clinical use.
Resumo:
Staphylococcus aureus genotype B (GTB) is a contagious mastitis pathogen in cattle, occurring in up to 87% of individuals. Because treatment is generally insufficient, culling is often required, leading to large economic loss in the Swiss dairy industry. As the detection of this pathogen in bulk tank milk (BTM) would greatly facilitate its control, a novel real-time quantitative PCR-based assay for BTM has previously been developed and is now being evaluated for its diagnostic properties at the herd level. Herds were initially classified as to their Staph. aureus GTB status by a reference method. Using BTM and herd pools of single-quarter and 4-quarter milk, the herds were then grouped by the novel assay, and the resulting classifications were compared. A total of 54 dairy herds were evaluated. Using the reference method, 21 herds were found to be GTB positive, whereas 33 were found to be negative. Considering the novel assay using both herd pools, all herds were grouped correctly, resulting in maximal diagnostic sensitivities (100%) and specificities (100%). For BTM samples, diagnostic sensitivities and specificities were 90 and 100%, respectively. Two herds were false negative in BTM, because cows with clinical signs of mastitis were not milked into the tank. Besides its excellent diagnostic properties, the assay is characterized by its low detection level, high efficiency, and its suitability for automation. Using the novel knowledge and assay, eradication of Staph. aureus GTB from a dairy herd may be considered as a realistic goal.
Resumo:
Abstract Staphylococcus aureus is a major mastitis-causing pathogen. Various genotypes have been recently identified in Switzerland but Staph. aureus genotype B (GTB) was the only genotype associated with high within-herd prevalence. The risk of introducing this Staph. aureus genotype into a herd may be increased by frequent animal movements. This may also be the case when cows from different herds of origin are commingled and share their milking equipment for a limited period of time. The aim of the present study was to determine the prevalence of Staph. aureus GTB in seasonally communal dairy herds before and after a summer period when dairy farming is characterized by mixing cows from different herds of origin in 1 communal operation. In addition, the environment was investigated to identify potential Staph. aureus GTB reservoirs relevant for transmission of the disease. A total of 829 cows from 110 herds of origin in 9 communal operations were included in the study. Composite milk samples were collected from all cows during the first or second milking after arrival at the communal operation and again shortly before the end of the season. Swab samples from the environment, involved personnel, and herding dogs present were collected before the cows arrived. At the end of the season, sampling of personnel was repeated. All samples were analyzed for the presence of Staph. aureus GTB using an established quantitative PCR. At the beginning of the season, Staph. aureus GTB-positive cows were identified in 7 out of 9 communal operations and the within-communal operation prevalence ranged from 2.2 to 38.9%. At the second sampling, all communal operations were Staph. aureus GTB positive, showing within-communal operation prevalence from 1 to 72.1%. The between-herd of origin prevalence increased from 27.3 to 56.6% and the cow-level prevalence increased from 11.2% at the beginning of the season to 29.6% at the end of the season. On 3 different communal operations, Staph. aureus GTB-positive swabs from seasonally employed personnel were identified at the end of the season. The results indicate that Staph. aureus GTB can easily spread in communal operations when cows from different herds of origin are mixed during the summer season. Effective management measures need to be designed to prevent the spread of Staph. aureus GTB in seasonally communal herds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. KEYWORDS: Staphylococcus aureus; biosecurity; communal herd; epidemiology