226 resultados para Myocardial collagen
Resumo:
CONTEXT: The effect of a percutaneous coronary intervention (PCI) on the long-term prognosis of patients with silent ischemia after a myocardial infarction (MI) is not known. OBJECTIVE: To determine whether PCI compared with drug therapy improves long-term outcome of asymptomatic patients with silent ischemia after an MI. DESIGN, SETTING, AND PARTICIPANTS: Randomized, unblinded, controlled trial (Swiss Interventional Study on Silent Ischemia Type II [SWISSI II]) conducted from May 2, 1991, to February 25, 1997, at 3 public hospitals in Switzerland of 201 patients with a recent MI, silent myocardial ischemia verified by stress imaging, and 1- or 2-vessel coronary artery disease. Follow-up ended on May 23, 2006. INTERVENTIONS: Percutaneous coronary intervention aimed at full revascularization (n = 96) or intensive anti-ischemic drug therapy (n = 105). All patients received 100 mg/d of aspirin and a statin. MAIN OUTCOME MEASURES: Survival free of major adverse cardiac events defined as cardiac death, nonfatal MI, and/or symptom-driven revascularization. Secondary measures included exercise-induced ischemia and resting left ventricular ejection fraction during follow-up. RESULTS: During a mean (SD) follow-up of 10.2 (2.6) years, 27 major adverse cardiac events occurred in the PCI group and 67 events occurred in the anti-ischemic drug therapy group (adjusted hazard ratio, 0.33; 95% confidence interval, 0.20-0.55; P<.001), which corresponds to an absolute event reduction of 6.3% per year (95% confidence interval, 3.7%-8.9%; P<.001). Patients in the PCI group had lower rates of ischemia (11.6% vs 28.9% in patients in the drug therapy group at final follow-up; P = .03) despite fewer drugs. Left ventricular ejection fraction remained preserved in PCI patients (mean [SD] of 53.9% [9.9%] at baseline to 55.6% [8.1%] at final follow-up) and decreased significantly (P<.001) in drug therapy patients (mean [SD] of 59.7% [11.8%] at baseline to 48.8% [7.9%] at final follow-up). CONCLUSION: Among patients with recent MI, silent myocardial ischemia verified by stress imaging, and 1- or 2-vessel coronary artery disease, PCI compared with anti-ischemic drug therapy reduced the long-term risk of major cardiac events. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00387231.
Resumo:
BACKGROUND: This study compared bone regeneration following guided bone regeneration with two bioabsorbable collagen membranes in saddle-type bone defects in dog mandibles. METHODS: Three standardized defects were created, filled with bone chips and deproteinized bovine bone mineral (DBBM), and covered by three different methods: control = no membrane; test 1 = collagen membrane; and test 2 = cross-linked collagen membrane (CCM). Each side of the mandible was allocated to one of two healing periods (8 or 16 weeks). The histomorphometric analysis assessed the percentage of bone, soft tissue, and DBBM in the regenerate; the absolute area in square millimeters of the bone regenerate; and the distance in millimeters from the bottom of the defect to the highest point of the regenerate. RESULTS: In the 8-week healing group, two dehiscences occurred with CCM. After 8 weeks, all treatment modalities showed no significant differences in the percentage of bone regenerate. After 16 weeks, the percentage of bone had increased for all treatment modalities without significant differences. For all groups, the defect fill height increased between weeks 8 and 16. The CCM group showed a statistically significant (P = 0.0202) increase over time and the highest value of all treatment modalities after 16 weeks of healing, CONCLUSIONS: The CCM showed a limited beneficial effect on bone regeneration in membrane-protected defects in dog mandibles when healing was uneventful. The observed premature membrane exposures resulted in severely compromised amounts of bone regenerate. This increased complication rate with CCM requires a more detailed preclinical and clinical examination before any clinical recommendations can be made.
Resumo:
AIM: To investigate the outcome of primary percutaneous coronary interventions (PCI) in elderly patients (>/=>/=75 years) with ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS: Between 1995 and 2003, a total of 319 consecutive patients with acute ST-elevation myocardial infarction presenting within 6-12 hr after onset of symptoms were prospectively enrolled in a registry. Of 296 patients undergoing primary PCI, 40 patients were >/=>/=75 years old (group A) and 256 patients younger than 75 years (group B). Elderly patients presented with a lower ejection fraction (49 +/- 14% vs. 53 +/- 13%, P = 0.046) and a higher number of cardiovascular risk factors. PCI success was achieved in 80% (group A) and 91% (group B, P = 0.031), respectively with comparable door-to-balloon times (87 +/- 49 and 95 +/- 79 min, P = ns). Periprocedural complications in both groups were low and major adverse cardiac events (death, myocardial infarction, target vessel revascularization and cardiac rehospitalization) after 6 months amounted to 23% (group A) and 20% (group B, P = ns), respectively. CONCLUSIONS: Clinical outcome of elderly patients (>/=>/=75 years) with acute STEMI is favorable and comparable with the middle-aged population. However, procedural success was significantly lower in elderly (80%) compared to younger patients (90%). Acute percutaneous coronary intervention appears to be safe and not associated with higher periprocedural complications, in elderly patients.
Resumo:
We review the case of a 48-year-old woman who underwent elective percutaneous patent foramen ovale closure following successive renal and myocardial infarction with normal renal and coronary arteries, probably as a consequence of paradoxical emboli.
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.
Resumo:
Trials on implantable cardioverter-defibrillators (ICD) for patients after acute myocardial infarction (AMI) have highlighted the need for risk assessment of arrhythmic events (AE). The aim of this study was to evaluate risk predictors based on a novel approach of interpreting signal-averaged electrocardiogram (SAECG) and ejection fraction (EF).
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
Intramyocardial transplantation of skeletal myoblasts augments postinfarction cardiac function. However, poor survival of injected cells limits this therapy. It is hypothesized that implantation of myoblast-based scaffolds would result in greater cell survival. Rat skeletal myoblasts were seeded on highly porous polyurethane (PU) scaffolds (7.5 x 7.5 x 2.0 mm). The effect of several scaffold pretreatments, initial cell densities, and culture periods was tested by DNA-based cell count and viability assessment. Seeded PU scaffolds were implanted on infarcted hearts and immunohistology was performed 4 weeks later. Precoating with laminin allowed the most favorable cell attachment. An initial inoculation with 5 x 10(6) cells followed by a 15-day culture period resulted in optimal myoblast proliferation. Four weeks after their implantation in rats, numerous myoblasts were found throughout the seeded patches although no sign of differentiation could be observed. This myoblast seeding technique on PU allows transfer of a large number of living myoblasts to a damaged myocardium.
Resumo:
Myocardial tissue engineering aims to repair, replace, and regenerate damaged cardiac tissue using tissue constructs created ex vivo. This approach may one day provide a full treatment for several cardiac disorders, including congenital diseases or ventricular dysfunction after myocardial infarction. Although the ex vivo construction of a myocardium-like tissue is faced with many challenges, it is nevertheless a pressing objective for cardiac reparative medicine. Multidisciplinary efforts have already led to the development of promising viable muscle constructs. In this article, we review the various concepts of cardiac tissue engineering and their specific challenges. We also review the different types of existing biografts and their physiological relevance. Although many investigators have favored cardiomyocytes, we discuss the potential of other clinically relevant cells, as well as the various hypotheses proposed to explain the functional benefit of cell transplantation.
Resumo:
The vitamin D(3) and nicotine (VDN) model is a model of isolated systolic hypertension (ISH) due to arterial calcification raising arterial stiffness and vascular impedance similar to an aged and stiffened arterial tree. We therefore analyzed the impact of this aging model on normal and diseased hearts with myocardial infarction (MI). Wistar rats were treated with VDN (n = 9), subjected to MI by coronary ligation (n = 10), or subjected to a combination of both MI and VDN treatment (VDN/MI, n = 14). A sham-treated group served as control (Ctrl, n = 10). Transthoracic echocardiography was performed every 2 wk, whereas invasive indexes were obtained at week 8 before death. Calcium, collagen, and protein contents were measured in the heart and the aorta. Systolic blood pressure, pulse pressure, thoracic aortic calcium, and end-systolic elastance as an index of myocardial contractility were highest in the aging model group compared with MI and Ctrl groups (P(VDN) < 0.05, 2-way ANOVA). Left ventricular wall stress and brain natriuretic peptide (P(VDNxMI) = not significant) were highest, while ejection fraction, stroke volume, and cardiac output were lowest in the combined group versus all other groups (P(VDNxMI) < 0.05). The combination of ISH due to this aging model and MI demonstrates significant alterations in cardiac function. This model mimics several clinical phenomena of cardiovascular aging and may thus serve to further study novel therapies.
Resumo:
It has been suggested that the shape of the normalized time-varying elastance curve [E(n)(t(n))] is conserved in different cardiac pathologies. We hypothesize, however, that the E(n)(t(n)) differs quantitatively after myocardial infarction (MI). Sprague-Dawley rats (n = 9) were anesthetized, and the left anterior descending coronary artery was ligated to provoke the MI. A sham-operated control group (CTRL) (n = 10) was treated without the MI. Two months later, a conductance catheter was inserted into the left ventricle (LV). The LV pressure and volume were measured and the E(n)(t(n)) derived. Slopes of E(n)(t(n)) during the preejection period (alpha(PEP)), ejection period (alpha(EP)), and their ratio (beta = alpha(EP)/alpha(PEP)) were calculated, together with the characteristic decay time during isovolumic relaxation (tau) and the normalized elastance at end diastole (E(min)(n)). MI provoked significant LV chamber dilatation, thus a loss in cardiac output (-33%), ejection fraction (-40%), and stroke volume (-30%) (P < 0.05). Also, it caused significant calcium increase (17-fold), fibrosis (2-fold), and LV hypertrophy. End-systolic elastance dropped from 0.66 +/- 0.31 mmHg/microl (CTRL) to 0.34 +/- 0.11 mmHg/microl (MI) (P < 0.05). Normalized elastance was significantly reduced in the MI group during the preejection, ejection, and diastolic periods (P < 0.05). The slope of E(n)(t(n)) during the alpha(PEP) and beta were significantly altered after MI (P < 0.05). Furthermore, tau and end-diastolic E(min)(n) were both significantly augmented in the MI group. We conclude that the E(n)(t(n)) differs quantitatively in all phases of the heart cycle, between normal and hearts post-MI. This should be considered when utilizing the single-beat concept.