145 resultados para Mitochondrial fission
Resumo:
African trypanosomes, the causative agent of Human African Trypanosomiasis (HAT) are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The mitochondrial outer membrane (MOM) of T. brucei is essentially unchartered territory. The beta barrel membrane proteins VDAC, Sam50 and archaic TOM are the only MOM proteins that have been characterized so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to raise the protein inventory of the MOM. Of the 82 candidate proteins two-thirds have never been associated with mitochondria before. The function of 42 proteins remains unknown. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three MOM candidate proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.
Resumo:
The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.
Resumo:
The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes residing in the MOM orchestrate protein and tRNA import, metabolite exchange and lipid metabolism. African trypanosomes are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The MOM of T. brucei is essentially unchartered territory. It lacks a canonical TOM-complex and proteins are imported across the MOM using ATOM, which is related to both Tom40 and to the bacterial Omp85-protein family. The beta barrel membrane proteins ATOM, VDAC and Sam50 are the only MOM proteins that have been characterized in T. brucei so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence Two-thirds of these polypeptides have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has so far only been found in yeast. Its function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
Background: Very few mitochondrial myopathies have been described in horses. Objective: To examine the ultrastructure of muscle mitochondria in equine cases of myopathy of unknown origin. Materials & methods: Biopsies of vastus lateralis of the Musculus quadriceps femoris were taken predominantly immediately post mortem and processed for transmission electron microscopy. As a result, electron micrographs of 90 horses in total were available for analysis comprising 4 control horses, 16 horses suffering from myopathy and 70 otherwise diseased horses. Results: Following a thorough clinical and laboratory work-up, four out of five patients that did not fit into the usual algorithm to detect known causes of myopathy showed ultrastructural mitochondrial alterations. Small mitochondria with zones with complete disruption of cristae associated with lactic acidemia were detected in a 17-year-old pony mare, extremely long and slender mitochondria with longitudinal cristae in a 5-year-old Quarter horse stallion, a mixture of irregular extremely large mitochondria (measuring 2500 by 800 nm) next to smaller ones in an 8-year-old Hanoverian mare and round mitochondria with only few cristae in a 11-year-old pony gelding. It remains uncertain whether the subsarcolemmal mitochondrial accumulations observed in the fifth patient have any pathological significance. Conclusions: Ultrastructural alterations in mitochondria were detected in at least four horses. To conclude that these are due to mitochondrial dysfuntions, biochemical tests should be performed. Practical applications: The possibility of a mitochondrial myopathy should be included in the differential diagnosis of muscle weakness.