308 resultados para McCardle, Stephanie
Resumo:
A systematic analysis of New Physics impacts on the rare decays KL→π0ell+ell- is performed. Thanks to their different sensitivities to flavor-changing local effective interactions, these two modes could provide valuable information on the nature of the possible New Physics at play. In particular, a combined measurement of both modes could disentangle scalar/pseudoscalar from vector or axial-vector contributions. For the latter, model-independent bounds are derived. Finally, the KL→π0μ+μ- forward-backward CP-asymmetry is considered, and shown to give interesting complementary information.
Resumo:
BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6x coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6x bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6x sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.
Resumo:
Prosody or speech melody subserves linguistic (e.g., question intonation) and emotional functions in speech communication. Findings from lesion studies and imaging experiments suggest that, depending on function or acoustic stimulus structure, prosodic speech components are differentially processed in the right and left hemispheres. This direct current (DC) potential study investigated the linguistic processing of digitally manipulated pitch contours of sentences that carried an emotional or neutral intonation. Discrimination of linguistic prosody was better for neutral stimuli as compared to happily as well as fearfully spoken sentences. Brain activation was increased during the processing of happy sentences as compared to neutral utterances. Neither neutral nor emotional stimuli evoked lateralized processing in the left or right hemisphere, indicating bilateral mechanisms of linguistic processing for pitch direction. Acoustic stimulus analysis suggested that prosodic components related to emotional intonation, such as pitch variability, interfered with linguistic processing of pitch course direction.
Resumo:
BACKGROUND: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep. METHODS: Naked plasmid DNA (pDNA) expressing either luciferase or green fluorescent protein (GFP) was delivered to mouse lungs by instillation. Following surgical visualisation, the lungs were directly electroporated and the level and duration of luciferase activity was assessed and cell types that were positive for GFP were identified in lung cryosections. Naked pDNA was nebulised to the sheep lung and electrodes attached to the tip of a bronchoscope were used to electroporate airway segment bifurcations, Luciferase activity was assessed in electroporated and control non-electroporated regions, after 24 h. RESULTS: Following delivery of naked pDNA to the mouse lung, electroporation resulted in up to 400-fold higher luciferase activity than naked pDNA alone when luciferase was under the control of a cytomegalovirus (CMV) promoter. Following delivery of a plasmid containing the human polyubiquitin C (UbC) promoter, electroporation resulted in elevated luciferase activity for at least 28 days. Visualisation of GFP indicated that electroporation resulted in increased GFP detection compared with non-electroporated controls. In the sheep lung electroporation of defined sites in the airways resulted in luciferase activity 100-fold greater than naked pDNA alone. CONCLUSIONS: These results indicate that electroporation can be used to enhance gene transfer in the lungs of mice and sheep without compromising the duration of expression.
Resumo:
Abstract Sphingosine kinases (SKs) are key enzymes regulating the production of sphingosine-1-phosphate (S1P), which determines important cell responses including cell growth and death. Here we show that renal mesangial cells isolated from wild-type, SK-1(-/-), and SK-2(-/-) mice show a differential response to apoptotic stimuli. Wild-type mesangial cells responded to staurosporine with increased DNA fragmentation and caspase-3 processing, which was enhanced in SK-1(-/-) cells. In contrast, SK-2(-/-) cells were highly resistant to staurosporine-induced apoptosis. Furthermore, the basal phosphorylation and activity of the anti-apoptotic protein kinase B (PKB) and of its substrate Bad were decreased in SK-1(-/-) but not in SK-2(-/-) cells. Upon staurosporine treatment, phosphorylation of PKB and Bad decreased in wild-type and SK-1(-/-) cells, but remained high in SK-2(-/-) cells. In addition, the anti-apoptotic Bcl-X(L) was significantly upregulated in SK-2(-/-) cells, which may further contribute to the protective state of these cells. In summary, our data show that SK-1 and SK-2 have opposite effects on the capacity of mesangial cells to resist apoptotic stimuli. This is due to differential modulation of the PKB/Bad pathway and of Bcl-X(L) expression. Thus, subtype-selective targeting of SKs will be critical when considering these enzymes as therapeutic targets for the treatment of inflammation or cancer.
Resumo:
Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.