101 resultados para Jensen-Haise
Resumo:
AIMS Patients with ST-segment elevation myocardial infarction (STEMI) feature thrombus-rich lesions with large necrotic core, which are usually associated with delayed arterial healing and impaired stent-related outcomes. The use of bioresorbable vascular scaffolds (Absorb) has the potential to overcome these limitations owing to restoration of native vessel lumen and physiology at long term. The purpose of this randomized trial was to compare the arterial healing response at short term, as a surrogate for safety and efficacy, between the Absorb and the metallic everolimus-eluting stent (EES) in patients with STEMI. METHODS AND RESULTS ABSORB-STEMI TROFI II was a multicentre, single-blind, non-inferiority, randomized controlled trial. Patients with STEMI who underwent primary percutaneous coronary intervention were randomly allocated 1:1 to treatment with the Absorb or EES. The primary endpoint was the 6-month optical frequency domain imaging healing score (HS) based on the presence of uncovered and/or malapposed stent struts and intraluminal filling defects. Main secondary endpoint included the device-oriented composite endpoint (DOCE) according to the Academic Research Consortium definition. Between 06 January 2014 and 21 September 2014, 191 patients (Absorb [n = 95] or EES [n = 96]; mean age 58.6 years old; 17.8% females) were enrolled at eight centres. At 6 months, HS was lower in the Absorb arm when compared with EES arm [1.74 (2.39) vs. 2.80 (4.44); difference (90% CI) -1.06 (-1.96, -0.16); Pnon-inferiority <0.001]. Device-oriented composite endpoint was also comparably low between groups (1.1% Absorb vs. 0% EES). One case of definite subacute stent thrombosis occurred in the Absorb arm (1.1% vs. 0% EES; P = ns). CONCLUSION Stenting of culprit lesions with Absorb in the setting of STEMI resulted in a nearly complete arterial healing which was comparable with that of metallic EES at 6 months. These findings provide the basis for further exploration in clinically oriented outcome trials.
Resumo:
AIMS The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated with delayed arterial healing and impaired stent-related outcomes. The purpose of the present study is to compare directly the arterial healing response, angiographic efficacy and clinical outcomes between the Absorb BVS and metallic EES. METHODS AND RESULTS A total of 191 patients with acute STEMI were randomly allocated to treatment with the Absorb BVS or a metallic EES 1:1. The primary endpoint is the neointimal healing (NIH) score, which is calculated based on a score taking into consideration the presence of uncovered and malapposed stent struts, intraluminal filling defects and excessive neointimal proliferation, as detected by optical frequency domain imaging (OFDI) six months after the index procedure. The study will provide 90% power to show non-inferiority of the Absorb BVS compared with the EES. CONCLUSIONS This will be the first randomised study investigating the arterial healing response following implantation of the Absorb BVS compared with the EES. The healing response assessed by a novel NIH score in conjunction with results on angiographic efficacy parameters and device-oriented events will elucidate disease-specific applications of bioresorbable scaffolds.
Resumo:
In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with CVs of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat.
Resumo:
UNLABELLED The FREEDOM study and its Extension provide long-term information about the effects of denosumab for the treatment of postmenopausal osteoporosis. Treatment for up to 8 years was associated with persistent reduction of bone turnover, continued increases in bone mineral density, low fracture incidence, and a favorable benefit/risk profile. INTRODUCTION This study aims to report the results through year 5 of the FREEDOM Extension study, representing up to 8 years of continued denosumab treatment in postmenopausal women with osteoporosis. METHODS Women who completed the 3-year FREEDOM study were eligible to enter the 7-year open-label FREEDOM Extension in which all participants are scheduled to receive denosumab, since placebo assignment was discontinued for ethical reasons. A total of 4550 women enrolled in the Extension (2343 long-term; 2207 cross-over). In this analysis, women in the long-term and cross-over groups received denosumab for up to 8 and 5 years, respectively. RESULTS Throughout the Extension, sustained reduction of bone turnover markers (BTMs) was observed in both groups. In the long-term group, mean bone mineral density (BMD) continued to increase significantly at each time point measured, for cumulative 8-year gains of 18.4 and 8.3 % at the lumbar spine and total hip, respectively. In the cross-over group, mean BMD increased significantly from the Extension baseline for 5-year cumulative gains of 13.1 and 6.2 % at the lumbar spine and total hip, respectively. The yearly incidence of new vertebral and nonvertebral fractures remained low in both groups. The incidence of adverse and serious adverse events did not increase over time. Through Extension year 5, eight events of osteonecrosis of the jaw and two events of atypical femoral fracture were confirmed. CONCLUSIONS Denosumab treatment for up to 8 years was associated with persistent reductions of BTMs, continued BMD gains, low fracture incidence, and a consistent safety profile.
Resumo:
Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO₂ remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO₂ fertilization, land use, wild fire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO₂ dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO₂ and δ¹³ CO₂ changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO₂ dynamics from 8ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO₂ changes after 122 ka BP. This failure to simulate late-Eemian CO₂ dynamics could be a result of the imposed forcings such as prescribed CaCO₃ accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO₂ dynamics eshallow water CaCO₃ accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO₂ dynamics.
Resumo:
INTRODUCTION Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assessed the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47 patients) were measured before and after apical surgery. Data were collected relative to the cementoenamel junction (CEJ) as well as to the crestal bone level (CBL). One observer took all measurements twice (to calculate the intraobserver variability), and the means were used for further analysis. The following parameters were assessed for all treated teeth as well as for specific tooth groups: length of root-end resection and percentage change of root length, preoperative and postoperative RCRs, and percentage change of RCR after apical surgery. RESULTS The mean length of root-end resection was 3.58 ± 1.43 mm (relative to the CBL). This amounted to a loss of 33.2% of clinical and 26% of anatomic root length. There was an overall significant difference between the tooth groups (P < .05). There was also a statistically significant difference comparing mandibular and maxillary teeth (P < .05), but not for incisors/canines versus premolars/molars (P = .125). The mean preoperative and postoperative RCRs (relative to CEJ) were 1.83 and 1.35, respectively (P < .001). With regard to the CBL reference, the mean preoperative and postoperative RCRs were 1.08 and 0.71 (CBL), respectively (P < .001). The calculated changes of RCR after apical surgery were 24.8% relative to CEJ and 33.3% relative to CBL (P < .001). Across the different tooth groups, the mean RCR was not significantly different (P = .244 for CEJ and 0.114 for CBL). CONCLUSIONS This CBCT-based study demonstrated that the RCR is significantly changed after root-end resection in apical surgery irrespective of the clinical (CBL) or anatomic (CEJ) reference levels. The lowest, and thus clinically most critical, postoperative RCR was observed in maxillary incisors. Future clinical studies need to show the impact of resection length and RCR changes on the outcome of apical surgery.
Resumo:
INTRODUCTION If a surgical approach is chosen to treat a multirooted tooth affected by persistent periapical pathosis, usually only the affected roots are operated on. The present study assessed the periapical status of the nonoperated root 5 years after apical surgery of the other root in mandibular molars. METHODS Patients treated with apical surgery of mandibular molars with a follow-up of 5 years were selected. Patient-related and clinical parameters (sex, age, smoking, symptoms, and signs of infection) before surgery were recorded. Preoperative intraoral periapical radiographs and radiographs 5 years after surgery were examined. The following data were collected: tooth, operated root, type and quality of the coronal restoration, marginal bone level, length and homogeneity of the root canal filling, presence of a post/screw, periapical index (PAI) of each root, and radiographic healing of the operated root. The presence of apical pathosis of the nonoperated root was analyzed statistically in relation to the recorded variables. RESULTS Thirty-seven patients fulfilled the inclusion criteria. Signs of periapical pathosis in the nonoperated root 5 years after surgery (PAI ≥ 3) could be observed in only 3 cases (8.1%). Therefore, statistical analysis in relation to the variables was not possible. The PAI of the nonoperated root before surgery had a weak correlation with signs of apical pathosis 5 years after surgery. CONCLUSIONS Nonoperated roots rarely developed signs of new apical pathosis 5 years after apical surgery of the other root in mandibular molars. It appears reasonable to resect and fill only roots with a radiographically evident periapical lesion.
Resumo:
Cytomegalovirus infections are widely distributed with a seroprevalence of up to 100%. The majority of the cases take a silent course or deal with unspecific clinical symptoms. Complications in immunocompetent patients are rare but may affect the liver and lead up to an acute organ failure. In this case report, we describe a 35-year-old immunocompetent female with an acute cytomegalovirus infection presenting as acute hepatitis with ongoing upper right abdominal pain after cholecystectomy. Upper right abdominal pain is a common symptom with a wide range of differential diagnoses. If common reasons can be excluded, we want to sensitize for cytomegalovirus infection as a minor differential diagnosis even in immunocompetent patients.
Resumo:
Compromised skin integrity of farmed Atlantic salmon, commonly occurring under low temperature and stressful conditions, has major impacts on animal welfare and economic productivity. Even fish with minimal scale loss and minor wounds can suffer from secondary infections, causing downgrading and mortalities. Wound healing is a complex process, where water temperature and nutrition play key roles. In this study, Atlantic salmon (260 g) were held at different water temperatures (4 or 12 °C) and fed three different diets for 10 weeks, before artificial wounds were inflicted and the wound healing process monitored for 2 weeks. The fish were fed either a control diet, a diet supplemented with zinc (Zn) or a diet containing a combination of functional ingredients in addition to Zn. The effect of diet was assessed through subjective and quantitative skin histology and the transcription of skin-associated chemokines. Histology confirmed that wound healing was faster at 12 °C. The epidermis was more organised, and image analyses of digitised skin slides showed that fish fed diets with added Zn had a significantly larger area of the epidermis covered by mucous cells in the deeper layers after 2 weeks, representing more advanced healing progression. Constitutive levels of the newly described chemokines, herein named CK 11A, B and C, confirmed their preferential expression in skin compared to other tissues. Contrasting modulation profiles at 4 and 12 °C were seen for all three chemokines during the wound healing time course, while the Zn-supplemented diets significantly increased the expression of CK 11A and B during the first 24 h of the healing phase.
Resumo:
Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.
Resumo:
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells.