100 resultados para Human Melanocortin-1 Receptor
Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150.
Resumo:
Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red) adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2) pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5) pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.
Resumo:
The ACTH receptor (MC2R) is expressed predominantly in the adrenal cortex, but is one of five G protein-coupled, seven-transmembrane melanocortin receptors (MCRs), all of which bind ACTH to some degree. Testing of MC2R activity is difficult because most cells express endogenous MCRs; hence, ACTH will elicit background activation of assayable reporter systems. Inactivating mutations of MC2R lead to hereditary unresponsiveness to ACTH, also known as familial glucocorticoid deficiency (FGD). These patients are usually seen in early childhood with very low cortisol concentrations, normal mineralocorticoids, hyperpigmentation, and increased bodily growth. Several MC2R mutations have been reported in FGD, but assays of the activities of these mutants are cumbersome. We saw two patients with typical clinical findings of FGD. Genetic analysis showed that patient 1 was homozygous for the mutation R137W, and patient 2 was a compound heterozygote for S74I and Y254C. We tested the activity of these mutations in OS-3 cells, which are unresponsive to ACTH but have intact downstream cAMP signal transduction. OS-3 cells transfected with a cAMP-responsive luciferase reporter plasmid (pCREluc) were unresponsive to ACTH, but cotransfection with a vector expressing human MC2R increased luciferase activity more than 40-fold. Addition of ACTH to cells cotransfected with the pCREluc reporter and wild-type MC2R activated luciferase expression with a 50% effective concentration of 5.5 x 10(-9) M ACTH, which is similar to previously reported values. By contrast, the MC2R mutant R137W had low activity, and the S74I or Y254C mutants elicited no measurable response. This assay provides excellent sensitivity in an easily assayed transient transfection system, providing a more rapid and efficient measurement of ACTH receptor activity.
Resumo:
The human GH gene is 1.7 kilobase pairs (kb) in length and is composed of five exons and four introns. This gene is expressed in the pituitary gland and encodes a 22 kDa protein. In addition to this predominant (75%) form, 5-10% of pituitary GH is present as a 20 kDa protein that has an amino acid (aa) sequence identical to the 22 kDa form except for a 15 aa internal deletion of residues 32-46 as a result of an alternative splicing event. Because it has been reported that non-22-kDa GH isoforms might be partly responsible for short stature and growth retardation in children, the aim of this study was to compare the impact of both 22 kDa and 20 kDa GH on GH receptor gene (GH receptor/GH binding protein (GHR/GHBP)) expression. Various concentrations of 20 kDa and 22 kDa GH (0, 2, 5, 12.5, 25, 50 and 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was measured by quantitative PCR. Addition of either 20 kDa or 22 kDa GH, at low or normal physiological concentrations (0, 2, 5, 12.5, 25 or 50 ng/ml) induced a dose-dependent increase in GHR/GHBP expression. However, a supraphysiological concentration of 20 kDa GH (150 ng/ml) resulted in a significantly lower (P<0.05) downregulation of GHR/GHBP gene transcription compared with the downregulation achieved by this concentration of 22 kDa GH. This difference might be explained by a decreased ability to form a 1 : 1 complex with GHR and/or GHBP, which normally occurs at high concentrations of GH. Nuclear run-on experiments and GHBP determinations confirmed the changes in GHR/GHBP mRNA levels. In conclusion, we report that both 20 kDa and 22 kDa GH, in low and normal physiological concentrations, have the same effect on regulation of GHR/GHBP gene transcription in a human hepatoma cell line. At a supraphysiological concentration of 150 ng/ml, however, 20 kDa GH has a less self-inhibitory effect than the 22 kDa form.
Resumo:
Polyspecific IgG given intravenously at high doses (IVIG) is used for immunomodulatory therapy in autoimmune diseases such as idiopathic thrombocytopenic purpura and myasthenia gravis. It is assumed that the clinical effect is brought about in part by a modulation of mononuclear phagocyte function, in particular by an inhibition of Fc receptor (FcR) mediated phagocytosis. In the present study, the effect of IVIG on FcR-mediated phagocytosis by monocytes was analysed in vitro. Since monocytes exposed to minute amounts of surface-bound IgG displayed impaired phagocytosis of IgG-coated erythrocytes (EA), the effect of IVIG was studied with mononuclear cells suspended in teflon bags in medium containing 10% autologous serum and IVIG (2-10 mg/ml). Monocytes pre-exposed to IVIG and then washed, displayed impaired ingestion of EA when compared with control cells cultured in 10% autologous serum only. The decrease in phagocytosis was observed with sheep erythrocytes treated with either rabbit IgG or bovine IgG1 and with anti-D-treated human erythrocytes. This suggests that phagocytosis via both FcR type I (FcRI) and type II (FcRII) was decreased. The impairment of phagocytosis was dependent on the presence of intact IgG and was mediated by IVIG from nulliparous donors and from multigravidae to the same extent, suggesting that alloantibodies contained in IVIG have a minor role in modulating FcR-mediated phagocytosis by monocytes. A flow cytometric analysis using anti-FcRI, FcRII and FcRII monoclonal antibodies showed that IVIG treatment upregulated FcRI expression but did not significantly alter the expression of FcRII and FcRIII.
Resumo:
Radiolabeled fibrinogen (Fg) specifically binds to mononuclear leukocytes (MNL) and to purified monocytes, but not to nylon-nonadherent lymphocytes. The association is rapid, Ca++-dependent and reversible. MNL containing Fg-binding monocytes had not been exposed to endotoxin (less than 4 pg/mL) during the isolation and the binding test, and Fg binding was not altered by preincubation of MNL with lipopolysaccharide. The binding of Fg was inhibited by anti-Mac-1 antibodies (OKM1). Antibodies to surface-bound Fg were able to induce luminol-dependent chemiluminescence, indicating that Fg binding sites have receptor function. Emission of a signal depended on MNL exposure to Fg, on specific, divalent antibodies, but not on the antibody Fc portion. These data show that human monocytes constitutively express specific Fg receptors and suggest that Mac-1, a member of the integrin superfamily, is involved in Fg recognition.
Resumo:
In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches-from basic neurobiological approaches to human studies-might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.
Resumo:
BACKGROUND This first-in-human proof-of-concept study aimed to check whether safety and preclinical results obtained by intratumoral administration of BQ788, an endothelin receptor B (EDNRB) antagonist, can be repeated in human melanoma patients. METHODS Three patients received a single intralesional BQ788 application of 3 mg. After 3-7 days, the lesions were measured and removed for analysis. The administered dose was increased to a cumulative dosage of 8 mg in patient 4 (4 × 2.0 mg, days 0-3; lesion removed on day 4) and to 10 mg in patient 5 (3 × 3.3 mg, days 0, 3, and 10; lesion removed after 14 days). Control lesions were simultaneously treated with phosphate-buffered saline (PBS). All samples were processed and analyzed without knowledge of the clinical findings. RESULTS No statistical evaluation was possible because of the number of patients (n = 5) and the variability in the mode of administration. No adverse events were observed, regardless of administered dose. All observations were in accordance with results obtained in preclinical studies. Accordingly, no difference in degree of tumor necrosis was detected between BQ788- and PBS-treated samples. In addition, both EDNRB and Ki67 showed decreased expression in patients 2 and 5 and, to a lesser extent, in patient 1. Similarly, decreased expression of EDNRB mRNA in patients 2 and 5 and of BCL2A1 and/or PARP3 in patients 2, 3, and 5 was found. Importantly, semiquantitatively scored immunohistochemistry for CD31 and CD3 revealed more blood vessels and lymphocytes, respectively, in BQ788-treated tumors of patients 2 and 4. Also, in all patients, we observed inverse correlation in expression levels between EDNRB and HIF1A. Finally, in patient 5 (the only patient treated for longer than 1 week), we observed inhibition in lesion growth, as shown by size measurement. CONCLUSION The intralesional applications of BQ788 were well tolerated and showed signs of directly and indirectly reducing the viability of melanoma cells.