99 resultados para Human Cytochrome-p450 Enzymes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Women with epilepsy apparently have a higher incidence of polycystic ovary syndrome (PCOS) than do women without epilepsy. Whether the underlying disease or the antiepileptic drug (AED) treatment is responsible for this increased risk is unknown, although clinical reports implicate valproic acid (VPA) as a potential cause. The steroidogenic enzymes 3beta HSDII (3beta-hydroxysteroid dehydrogenase) and P450c17 (17alpha-hydroxylase/17,20 lyase) are essential for C19 steroid biosynthesis, which is enhanced during adrenarche and in PCOS. METHODS To determine whether the AEDs VPA, carbamazepine (CBZ), topiramate (TPM), or lamotrigine (LYG) directly affect the activities of human 3beta HSDII and P450c17, we added them to yeast expressing human P450c17 or 3beta HSDII and assayed enzymatic activities in the microsomal fraction. RESULTS Concentrations of VPA < or = 10 mM had no effect on activities of P450c17; however, VPA inhibited 3beta HSDII activity starting at 0.3 mM (reference serum unbound concentration, 0.035-0.1 mM) with an IC50 of 10.1 mM. CBZ, TPM, and LTG did not influence 3beta HSDII or P450c17 activities at typical reference serum unbound concentrations, but did inhibit 3beta HSDII and P450c17 at concentrations >10-fold higher. CONCLUSIONS None of the tested AEDs influenced 3beta HSDII or P450c17 activities at concentrations normally used in AED therapy. However, VPA started to inhibit 3beta HSDII activity at concentrations 3 times above the typical reference serum unbound concentration. Because inhibition of 3beta HSDII activity will shift steroidogenesis toward C19 steroid production when P450c17 activities are unchanged, very high doses of VPA may promote C19 steroid biosynthesis, thus resembling PCOS. CBZ, TPM, and LTG influenced 3beta HSDII and P450c17 only at toxic concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes steroidogenic 17alpha-hydroxylase and 17,20 lyase activities. Expression of the gene for P450c17 is cAMP dependent, tissue specific, developmentally programmed, and varies among species. Binding of Sp1, Sp3, and NF1-C (nuclear factor 1-C) to the first 227 bp of 5'flanking DNA (-227/LUC) is crucial for basal transcription in human NCI-H295A adrenal cells. Human placental JEG-3 cells contain Sp1, Sp3, and NF1, but do not express -227/LUC, even when transfected with a vector expressing steroidogenic factor 1 (SF-1). Therefore, other factors are essential for basal expression of P450c17. Deoxyribonuclease I footprinting and EMSAs identified a GATA consensus site at -64/-58 and an SF-1 site at -58/-50. RT-PCR identified GATA-4, GATA-6, and SF-1 in NCI-H295A cells and GATA-2 and GATA-3, but not GATA-4, GATA-6, or SF-1 in JEG-3 cells. Cotransfection of either GATA-4 or GATA-6 without SF-1 activated -227/LUC in JEG-3 cells, but cotransfection of GATA-2 or GATA-3 with or without SF-1 did not. Surprisingly, mutation of the GATA binding site in -227/LUC increased GATA-4 or GATA-6 induced activity, whereas mutation of the Sp1/Sp3 site decreased it. Furthermore, promoter constructs including the GATA site, but excluding the Sp1/Sp3 site at -196/-188, were not activated by GATA-4 or GATA-6, suggesting an interaction between Sp1/Sp3 and GATA-4 or GATA-6. Glutathione-S-transferase pull-down experiments and coimmunoprecipitation demonstrated interaction between GATA-4 or GATA-6 and Sp1, but not Sp3. Chromatin immunoprecipitation assays confirmed that this GATA-4/6 interaction with Sp1 occurred at the Sp site in the P450c17 promoter in NCI-H295A cells. Demethylation with 5-aza-2-deoxycytidine permitted JEG-3 cells to express endogenous P450c17, SF-1, GATA-4, GATA-6, and transfected -227/LUC. Thus, GATA-4 or GATA-6 and Sp1 together regulate expression of P450c17 in adrenal NCI-H295A cells and methylation of P450c17, GATA-4 and GATA-6 silence the expression of P450c17 in placental JEG-3 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sirtuins (SIRT1-7) are a highly conserved family of NAD(+)-dependent enzymes that control the activity of histone and nonhistone regulatory proteins. SIRT1 is purposed to promote longevity and to suppress the initiation of some cancers. Nevertheless, SIRT1 is reported to function as a tumor suppressor as well as an oncogenic protein. Our data show that compared with normal liver or surrounding tumor tissue, SIRT1 is strongly overexpressed in human hepatocellular carcinoma (HCC). In addition, human HCC cell lines (Hep3B, HepG2, HuH7, HLE, HLF, HepKK1, skHep1) were screened for the expression of the sirtuin family members and only SIRT1 was consistently overexpressed compared with normal hepatocytes. To determine its effect on HCC growth, SIRT1 activity was inhibited either with lentiviruses expressing short hairpin RNAs or with the small molecule inhibitor, cambinol. Knockdown or inhibition of SIRT1 activity had a cytostatic effect, characterized by an altered morphology, impaired proliferation, an increased expression of differentiation markers, and cellular senescence. In an orthotopic xenograft model, knockdown of SIRT1 resulted in 50% fewer animals developing tumors and cambinol treatment resulted in an overall lower tumor burden. Taken together, our data show that inhibition of SIRT1 in HCC cells impairs their proliferation in vitro and tumor formation in vivo. These data suggest that SIRT1 expression positively influences the growth of HCC and support further studies aimed to block its activity alone or in combination as a novel treatment strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atenolol is a highly prescribed anti-hypertensive pharmaceutical and a member of the group of β-blockers. It has been detected at concentrations ranging from ng L(-1) to low μg L(-1) in waste and surface waters. The present study aimed to assess the sub-lethal effects of atenolol on rainbow trout (Oncorhynchus mykiss) and to determine its tissue-specific bioconcentration. Juvenile rainbow trout were exposed for 21 and 42 days to three concentration levels of atenolol (1 μg L(-1) - environmentally relevant concentration, 10 μg L(-1), and 1000 μg L(-1)). The fish exposed to 1 μg L(-1) atenolol exhibited a higher lactate content in the blood plasma and a reduced haemoglobin content compared with the control. The results show that exposure to atenolol at concentrations greater than or equal to 10 μg L(-1) significantly reduces both the haematocrit value and the glucose concentration in the blood plasma. The activities of the studied antioxidant enzymes (catalase and superoxide dismutase) were not significantly affected by atenolol exposure, and only the highest tested concentration of atenolol significantly reduced the activity of glutathione reductase. The activities of selected CYP450 enzymes were not affected by atenolol exposure. The histological changes indicate that atenolol has an effect on the vascular system, as evidenced by the observed liver congestion and changes in the pericardium and myocardium. Atenolol was found to have a very low bioconcentration factor (the highest value found was 0.27). The bioconcentration levels followed the order liver>kidney>muscle. The concentration of atenolol in the blood plasma was below the limit of quantification (2.0 ng g(-1)). The bioconcentration factors and the activities of selected CYP450 enzymes suggest that atenolol is not metabolised in the liver and may be excreted unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by a) the metabolites of the fetal-placental unit at birth, b) the fetal adrenal androgens until its involution 3-6 months postnatally, and c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymes of oxidative phosphorylation are a striking example of the functional association of multiple enzyme complexes, working together to form ATP from cellular reducing equivalents. These complexes, such as cytochrome c oxidase or the ATP synthase, are typically investigated individually and therefore, their functional interplay is not well understood. Here, we present methodology that allows the co-reconstitution of purified terminal oxidases and ATP synthases in synthetic liposomes. The enzymes are functionally coupled via proton translocation where upon addition of reducing equivalents the oxidase creates and maintains a transmembrane electrochemical proton gradient that energizes the synthesis of ATP by the F1F0 ATP synthase. The method has been tested with the ATP synthases from Escherichia coli and spinach chloroplasts, and with the quinol and cytochrome c oxidases from E. coli and Rhodobacter sphaeroides, respectively. Unlike in experiments with the ATP synthase reconstituted alone, the setup allows in vitro ATP synthesis under steady state conditions, with rates up to 90 ATP×s(-1)×enzyme(-1). We have also used the novel system to study the phenomenon of "mild uncoupling" as observed in mitochondria upon addition of low concentrations of ionophores (e.g. FCCP, SF6847) and the recoupling effect of 6-ketocholestanol. While we could reproduce the described effects, our data with the in vitro system does not support the idea of a direct interaction between a mitochondrial protein and the uncoupling agents as proposed earlier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells.