99 resultados para High pressure system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

XMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure–temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure–temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to ~165,000 analyses yield estimates for the eclogitic pressure–temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure–temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure–temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Athletes in a state of ego depletion do not perform up to their capabilities in high pressure situations (e.g., Englert & Bertrams, 2012). We assume that momentarily available self-control strength determines whether individuals in high pressure situations can resist distracting stimuli. In the present study, we applied a between-subjects design, as 31 experienced basketball players were randomly assigned to a depletion group or a non-depletion group. Participants performed 30 free throws while listening to statements representing worrisome thoughts (as frequently experienced in high pressure situations; Oudejans, Kuijpers, Kooijman, & Bakker, 2011) over stereo headphones. Participants were instructed to block out these distracting audio messages and focus on the free throws. We postulated that depleted participants would be more likely to be distracted and would perform worse in the free throw task. The results supported our assumption as depleted participants paid more attention to the distracting stimuli and displayed worse performance in the free throw task. These results indicate that sufficient levels of self-control strength can serve as a buffer against increased distractibility under pressure. Implementing self-control trainings into workout routines may be a useful approach (e.g., Oaten & Cheng, 2007).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-pressure mechanical squeezing was applied to sample pore waters from a sequence of highly indurated and overconsolidated sedimentary rocks in a drillcore from a deep borehole in NE Switzerland. The rocks are generally rich in clay minerals (28–71 wt.%), with low water contents of 3.5–5.6 wt.%, resulting in extremely low hydraulic conductivities of 10− 14–10− 13 m/s. First pore-water samples could generally be taken at 200 MPa, and further aliquots were obtained at 300, 400 and 500 MPa. Chemical and isotopic compositions of squeezed waters evolve with increasing pressure. Decreasing concentrations of Cl−, Br−, Na+ and K+ are explained by ion filtration due to the collapse of the pore space during squeezing. Increasing concentrations of Ca2 + and Mg2 + are considered to be a consequence of pressure-dependent solubilities of carbonate minerals in combination with sorption/desorption reactions. The pressure dependence was studied by model calculations considering equilibrium with carbonate minerals and the exchanger population on clay surfaces, and the trends observed in the experiments could be confirmed. The compositions of the squeezed waters were compared with results of independent methods, such as aqueous extraction and in-situ sampling of ground and pore waters. On this basis, it is concluded that the chemical and isotopic composition of pore water squeezed at the lowest pressure of 200 MPa closely represents that of the in-situ pore water. The feasibility of sampling pore waters with water contents down to 3.5 wt.% and possibly less opens new perspectives for studies targeted at palaeo-hydrogeological investigations using pore-water compositions in aquitards as geochemical archives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron-microprobe analysis, single-crystal X-ray diffraction with an area detector, and high-resolution transmission electron microscopy show that minerals related to wagnerite, triplite and triploidite, which are monoclinic Mg, Fe and Mn phosphates with the formula Me2+ 2PO4(F,OH), constitute a modulated series based on the average triplite structure. Modulation occurs along b and may be commensurate with (2b periodicity) or incommensurate but generally close to integer values (∼3b, ∼5b, ∼7b, ∼9b), i.e. close to polytypic behaviour. As a result, the Mg- and F-dominant minerals magniotriplite and wagnerite can no longer be considered polymorphs of Mg2PO4F, i.e., there is no basis for recognizing them as distinct species. Given that wagnerite has priority (1821 vs. 1951), the name magniotriplite should be discarded in favour of wagnerite. Hydroxylwagnerite, end-member Mg2PO4OH, occurs in pyrope megablasts along with talc, clinochlore, kyanite, rutile and secondary apatite in two samples from lenses of pyrope–kyanite–phengite–quartz-schist within metagranite in the coesite-bearing ultrahigh-pressure metamorphic unit of the Dora-Maira Massif, western Alps, Vallone di Gilba, Val Varaita, Piemonte, Italy. Electron microprobe analyses of holotype hydroxylwagnerite and of the crystal with the lowest F content gave in wt%: P2O5 44.14, 43.99; SiO2 0.28, 0.02; SO3 –, 0.01; TiO2 0.20, 0.16; Al2O3 0.06, 0.03; MgO 48.82, 49.12; FeO 0.33, 0.48; MnO 0.01, 0.02; CaO 0.12, 0.10; Na2O 0.01, –; F 5.58, 4.67; H2O (calc) 2.94, 3.36; –O = F 2.35, 1.97; Sum 100.14, 99.98, corresponding to (Mg1.954Fe0.007Ca0.003Ti0.004Al0.002Na0.001)Σ=1.971(P1.003Si0.008)Σ=1.011O4(OH0.526F0.474)Σ=1 and (Mg1.971Fe0.011Ca0.003Ti0.003Al0.001)Σ=1.989(P1.002Si0.001)Σ=1.003O4(OH0.603F0.397)Σ=1, respectively. Due to the paucity of material, H2O could not be measured, so OH was calculated from the deficit in F assuming stoichiometry, i.e., by assuming F + OH = 1 per formula unit. Holotype hydroxylwagnerite is optically biaxial (+), α 1.584(1), β 1.586(1), γ 1.587(1) (589 nm); 2V Z(meas.) = 43(2)°; orientation Y = b. Single-crystal X-ray diffraction gives monoclinic symmetry, space group P21/c, a = 9.646(3) Å, b = 12.7314(16) Å, c = 11.980(4) Å, β = 108.38(4) , V = 1396.2(8) Å3, Z = 16, i.e., hydroxylwagnerite is the OH-dominant analogue of wagnerite [β-Mg2PO4(OH)] and a high-pressure polymorph of althausite, holtedahlite, and α- and ε-Mg2PO4(OH). We suggest that the group of minerals related to wagnerite, triplite and triploidite constitutes a triplite–triploidite super-group that can be divided into F-dominant phosphates (triplite group), OH-dominant phosphates (triploidite group), O-dominant phosphates (staněkite group) and an OH-dominant arsenate (sarkinite). The distinction among the three groups and a potential fourth group is based only on chemical features, i.e., occupancy of anion or cation sites. The structures of these minerals are all based on the average triplite structure, with a modulation controlled by the ratio of Mg, Fe2+, Fe3+ and Mn2+ ionic radii to (O,OH,F) ionic radii.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Convergent plate margins typically experience a transition from subduction to collision dynamics as massive continental blocks enter the subduction channel. Studies of high-pressure rocks indicate that tectonic fragments are rapidly exhumed from eclogite facies to midcrustal levels, but the details of such dynamics are controversial.To understand the dynamics of a subduction channel we report the results of a petrochronological study from the central Sesia Zone, a key element of the internalWestern Alps.This comprises two polymetamorphic basement complexes (Eclogitic Micaschist Complex and Gneiss Minuti Complex) and a thin, dismembered cover sequence (Scalaro Unit) associated with pre-Alpine metagabbros and metasediments (Bonze Unit). Structurally controlled samples from three of these units (Eclogitic Micaschist Complex and Scalaro-Bonze Units) yield unequivocal petrological and geochronological evidence of two distinct high-pressure stages. Ages (U-Th-Pb) of growth zones in accessory allanite and zircon, combined with inclusion and textural relationships, can be tied to the multi-stage evolution of single samples.Two independent tectono-metamorphic ‘slices’ showing a coherent metamorphic evolution during a given time interval have been recognized: the Fondo slice (which includes Scalaro and Bonze rocks) and the Druer slice (belonging to the Eclogitic Micaschist Complex).The new data indicate separate stages of deformation at eclogite-facies conditions for each recognized independent kilometer-sized tectono-metamorphic slice, between ~85 and 60 Ma, with evidence of intermittent decompression (∆P~0.5 GPa) within only the Fondo slice. The evolution path of the Druer slice indicates a different P-T-time evolution with prolonged eclogite-facies metamorphism between ~85 and 75Ma. Our approach, combining structural, petrological and geochronological techniques, yields field-based constraints on the duration and rates of dynamics within a subduction channel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Sesia Zone (Italian Western Alps), slivers of continental crust characterised by an Alpine high-pressure imprint are intermingled with abundant mafic rocks and Mesozoic metasediments. An extensive study of the central Sesia Zone was undertaken to identify and reconstruct the lithological setting of the mono-cyclic sediments of the Scalaro Unit. A new geological map (1:5000) and schematic cross sections across the Scalaro Unit and the adjoining Eclogitic Micaschist Complex are presented here. In order to delimit the size and shape of the mono-metamorphic unit and understand its internal geometry with respect to the poly-metamorphic basement, an integrated approach was used. Linking observations and data across a range of scales, from kilometres in the field down to petrological and chronological data obtained at micrometre scale, we define for the first time the real size and internal geometry of the Scalaro Unit, as well as its large-scale structural context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volcanic arcs above subduction zones are enriched in volatiles and fluid-mobile elements with respect to mid-oceanic ridge basalts. There is general consensus that this particular subduction zone signature is generated by fluid-induced extraction of these elements from subducted oceanic crust and its sedimentary cover. However, how these fluids are transferred through the mantle wedge to the locus of partial melting and what modification the fluids will experience is unresolved. Here we investigate the interaction of slab fluids with the mantle wedge through a series of high-pressure experiments. We explore two end-member processes of focused and porous reactive flow of hydrous slab melts through the mantle. Transfer by porous flow leads to the formation of hydrous minerals that sequester fluid-mobile elements and residual fluids characterized by trace element patterns inconsistent with typical arc lavas. In contrast, no hydrous minerals are formed in the reaction zone of experiments mimicking focused flow, and the typical trace element signature acquired during fluid extraction from the slab is preserved, indicating that this is an efficient process for element transfer through the mantle wedge.