136 resultados para HEPATOCYTE APOPTOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal patterns of cell death, including increased apoptosis, can influence homeostasis of ligaments and could be involved in the pathogenesis of cranial cruciate ligament (CCL) rupture. Increased nitric oxide (NO) production has been implicated as a stimulus to increased apoptosis in articular cartilage. This study investigated apoptotic cell death in ruptured canine CCL (CCL group, n = 15), in ruptured CCL of dogs treated with oral L-N6-(1-iminoethyl)-lysine (L-NIL), a selective NO-synthetase(NOS)-inhibitor, (L-NIL group, n = 15) and compared the results with normal canine CCL (control group, n = 10). Orally administered L-NIL at a dosage of 25mg/m2 of body surface area was effective in inhibiting NO production in the articular cartilage of dogs in the L-NIL group, but it did not significantly influence the increased quantity of apoptotic cells found in ruptured CCL specimens. The results of this study suggest that apoptosis of ligamentocytes in the canine CCL is not primarily influenced by increased NO production within the stifle joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (Bim(ΔFoxo/ΔFoxo)). Contrary to Bim-deficient mice, Bim(ΔFoxo/ΔFoxo) mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from Bim(ΔFoxo/ΔFoxo) and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Resistance to chemotherapy in lung adenocarcinoma remains a major obstacle. We examined the potential role of Octamer-binding transcription factor-4B (OCT4B) in enhancing sensitivity of lung adenocarcinoma cells to cisplatin. MATERIALS AND METHODS RNAi interference was used to examine the role of OCT4B in cisplatin-treated A549 cells. Cells were transfected with OCT4B siRNA prior to a 48-h cisplatin treatment. Propidium iodide (PI) and caspase-3 staining were used to determine cell viability and apoptosis. Cell-cycle analysis was performed to evaluate alterations in phase distribution. RESULTS OCT4B suppression in cells increased the number of non-viable, PI(+), and apoptotic, caspase-3(+) cells in the presence and absence of cisplatin treatment. Importantly, cisplatin treatment of OCT4B-suppressed cells resulted in a marked transition of cells from G0/G1 to G2/M phase. CONCLUSION Silencing of OCT4B confers sensitivity to cisplatin treatment in A549 cells via cell-cycle regulation, increased proliferation and enhancement of cisplatin-induced apoptosis. OCT4B clearly protects A549 cells from apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has previously been published that interferon-α (type I IFN) improves clinical symptoms of asthma patients. Since human basophils are major inflammatory cells in maintaining chronic allergic asthma we investigate whether type I IFN affect human blood basophils. Furthermore, previous studies have shown that spontaneous apoptosis of human basophils is slow due to constitutive expression of anti-apoptotic BCL-2 family members. In addition, IL-3 exceptionally promotes survival of basophils by enhancing constitutive expression of BCL-2 family members and by inducing de-novo expression of Pim-1 kinase. Thus, we also assessed whether type I IFN might overcome IL-3-induced survival of human basophils. Our data show that type I IFN enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or type II IFN treated cells. Furthermore, we demonstrate that both type I IFN and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. Analyses of signaling pathways reveal that type I IFN promote prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of type I IFN is abolished. On the other hand, type I IFN do not reduce IL-3-induced de novo expression of Pim-1 and BCL-2. This is in line with our observation that IL-3-induced survival is dominant over type I IFN-enhanced apoptosis. In addition, phosphorylation of p38 MAPK in type I IFN treated cells is comparable to non-treated cells. Particularly however, inhibition of this p-p38 activity abrogates apoptosis as well. We conclude that type I IFN-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38 MAPK pathways. Our study identifies a so far unknown effect of type I IFN and may explain the improved clinical symptoms of asthma patients treated with type I IFN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we established cell culture conditions for primary equine hepatocytes allowing cytochrome P450 enzyme (CYP) induction experiments. Hepatocytes were isolated after a modified method of Bakala et al. (2003) and cultivated on collagen I coated plates. Three different media were compared for their influence on morphology, viability and CYP activity of the hepatocytes. CYP activity was evaluated with the fluorescent substrate 7-benzyloxy-4-trifluoromethylcoumarin. Induction experiments were carried out with rifampicin, dexamethasone or phenobarbital. Concentration-response curves for induction with rifampicin were created. Williams' medium E showed the best results on morphology and viability of the hepatocytes and was therefore used for the following induction experiments. Cells cultured in Dulbecco's Modified Eagle Medium were not inducible. Incubation with rifampicin increased the CYP activity in two different hepatocyte preparations in a dose dependent manner (EC50=1.20 μM and 6.06 μM; Emax=4.1- and 3.4-fold induction). No increase in CYP activity was detected after incubation with dexamethasone or phenobarbital. The hepatocyte culture conditions established in this study proved to be valuable for investigation of the induction of equine CYPs. In further studies, other equine drugs can be evaluated for CYP induction with this in vitro system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To determine the feasibility of evaluating surgically induced hepatocyte damage using gadoxetate disodium (Gd-EOB-DTPA) as a marker for viable hepatocytes at magnetic resonance imaging (MRI) after liver resection. MATERIAL AND METHODS: Fifteen patients were prospectively enrolled in this institutional review board-approved study prior to elective liver resection after informed consent. Three Tesla MRI was performed 3-7 days after surgery. Three-dimensional (3D) T1-weighted (W) volumetric interpolated breath-hold gradient echo (VIBE) sequences covering the liver were acquired before and 20 min after Gd-EOB-DTPA administration. The signal-to-noise ratio (SNR) was used to compare the uptake of Gd-EOB-DTPA in healthy liver tissue and in liver tissue adjacent to the resection border applying paired Student's t-test. Correlations with potential influencing factors (blood loss, duration of intervention, age, pre-existing liver diseases, postoperative change of resection surface) were calculated using Pearson's correlation coefficient. RESULTS: Before Gd-EOB-DTPA administration the SNR did not differ significantly (p = 0.052) between healthy liver tissue adjacent to untouched liver borders [59.55 ± 25.46 (SD)] and the liver tissue compartment close to the resection surface (63.31 ± 27.24). During the hepatocyte-specific phase, the surgical site showed a significantly (p = 0.04) lower SNR (69.44 ± 24.23) compared to the healthy site (78.45 ± 27.71). Dynamic analyses revealed a significantly lower increase (p = 0.008) in signal intensity in the healthy tissue compared to the resection border compartment. CONCLUSION: EOB-DTPA-enhanced MRI may have the potential to be an effective non-invasive tool for detecting hepatocyte damage after liver resection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Bacterial meningitis caused by Streptococcus pneumoniae leads to death in up to 30% of patients and leaves up to half of the survivors with neurological sequelae. The inflammatory host reaction initiates the induction of the kynurenine pathway and contributes to hippocampal apoptosis, a form of brain damage that is associated with learning and memory deficits in experimental paradigms. Vitamin B6 is an enzymatic cofactor in the kynurenine pathway and may thus limit the accumulation of neurotoxic metabolites and preserve the cellular energy status. The aim of this study in a pneumococcal meningitis model was to investigate the effect of vitamin B6 on hippocampal apoptosis by histomorphology, by transcriptomics and by measurement of cellular nicotine amide adenine dinucleotide content. METHODS AND RESULTS Eleven day old Wistar rats were infected with 1x10(6) cfu/ml of S. pneumoniae and randomized for treatment with vitamin B6 or saline as controls. Vitamin B6 led to a significant (p > 0.02) reduction of hippocampal apoptosis. According to functional annotation based clustering, vitamin B6 led to down-regulation of genes involved in processes of inflammatory response, while genes encoding for processes related to circadian rhythm, neuronal signaling and apoptotic cell death were mostly up-regulated. CONCLUSIONS Our results provide evidence that attenuation of apoptosis by vitamin B6 is multi-factorial including down-modulation of inflammation, up-regulation of the neuroprotective brain-derived neurotrophic factor and prevention of the exhaustion of cellular energy stores. The neuroprotective effect identifies vitamin B6 as a potential target for the development of strategies to attenuate brain injury in bacterial meningitis.