146 resultados para Defect tracking
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset - the period 1989-2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Resumo:
For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.
Resumo:
During the last years the use of tracking cameras for SLR observations became less important due to the high accuracy of the predicted orbits. Upcoming new targets like satellites in eccentric orbits and space debris objects, however, require tracking cameras again. In 2013 the interline CCD camera was replaced at the Zimmerwald Observatory with a so called scientific CMOS camera. This technology promises a better performance for this application than all kinds of CCD cameras. After the comparison of the different technologies the focus will be on the integration in the Zimmerwald SLR system.
Resumo:
BACKGROUND Whole genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single nucleotide polymorphism (SNP)-typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS Based on genome sequences of three historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1,642 patient isolates, and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS We identified 68 patients associated with the outbreak strain. Most were diagnosed in 1991-1995, but cases were observed until 2011. Two thirds belonged to the homeless and substance abuser milieu. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into three sub-clusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS Strain-specific SNP-genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real-time and at high resolution.
Resumo:
BackgroundThe present preliminary study describes concentration time courses of the NSAID carprofen in the plasma and synovial fluid in a microfrature sheep model after transcutaneous treatments with a novel application device (Vetdrop®). To treat circumscribed inflammatory processes a transcutaneous application device could potentially be beneficial. After transcutaneous application normally lower systemic concentrations are measured which may reduce the incidence of side effects, whereas efficacy is still maintained.In this study carprofen was used based on its capacity to provide analgesia after orthopaedic procedures in sheep and it is considered that it may have a positive influence on the healing of cartilage in low concentrations.ResultsIn all transcutaneously treated animals, carprofen plasma concentrations exceeded those of synovial fluid, although plasma levels remained significantly reduced (300-fold) as compared to carprofen administered intravenously. Furthermore, in contrast to the intravenously treated animals, a modest accumulation of carprofen in plasma and synovial fluid was observed in the transcutaneously treated animals over the 6-week treatment period.ConclusionsThe transcutaneously administered carprofen using the Vetdrop® device penetrated the skin and both, plasma- and synovial concentrations could be measured repeatedly over time. This novel device may be considered a valuable transcutaneous drug delivery system.
Resumo:
This study focuses on relations between 7- and 9-year-old children’s and adults’ metacognitive monitoring and control processes. In addition to explicit confidence judgments (CJ), data for participants’ control behavior during learning and recall as well as implicit CJs were collected with an eye-tracking device (Tobii 1750). Results revealed developmental progression in both accuracy of implicit and explicit monitoring across age groups. In addition, efficiency of learning and recall strategies increases with age, as older participants allocate more fixation time to critical information and less time to peripheral or potentially interfering information. Correlational analyses, recall performance, metacognitive monitoring, and controlling indicate significant interrelations between all of these measures, with varying patterns of correlations within age groups. Results are discussed in regard to the intricate relationship between monitoring and recall and their relation to performance.