107 resultados para DRUG-INDUCED APOPTOSIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Stimulants, such as methylphenidate, are among the most commonly used medications in children and adolescents. Psychotic symptoms have been reported as rare adverse reactions to stimulants but have not been systematically inquired about in most previous studies. Family history of mental illness may increase the vulnerability to drug-induced psychotic symptoms. We examined the association between stimulant use and psychotic symptoms in sons and daughters of parents with major mood and psychotic disorders. METHODS: We assessed psychotic symptoms, psychotic-like experiences, and basic symptoms in 141 children and youth (mean ± SD age: 11.8 ± 4.0 years; range: 6–21 years), who had 1 or both parents with major depressive disorder, bipolar disorder, or schizophrenia, and of whom 24 (17.0%) had taken stimulant medication. RESULTS: Psychotic symptoms were present in 62.5% of youth who had taken stimulants compared with 27.4% of participants who had never taken stimulants. The association between stimulant use and psychotic experiences remained significant after adjustment for potential confounders (odds ratio: 4.41; 95% confidence interval: 1.82–10.69; P = .001) and was driven by hallucinations occurring during the use of stimulant medication. A temporal relationship between use of stimulants and psychotic symptoms was supported by an association between current stimulant use and current psychotic symptoms and co-occurrence in cases that were assessed on and off stimulants. CONCLUSIONS: Psychotic symptoms should be monitored during the use of stimulants in children and adolescents. Family history of mood and psychotic disorders may need to be taken into account when considering the prescription of stimulants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resistance to current chemo- and radiation therapy is the principal problem in anticancer treatment. Although intensively investigated, the therapeutic outcome is still far from satisfactory. Among the multiple factors which contribute to the drug resistance in cancer cells, the involvement of autophagy is becoming more and more evident. Autophagy describes a cellular self-digestion process, in which cytoplasmic elements can be selectively engulfed and finally degraded in autophagolysosomes to supply nutrients and building blocks for the cells. Autophagy controls cellular homeostasis and can be induced in response to stresses, like hypoxia and growth factor withdrawal. Since the essential physiological function of autophagy is to maintain cellular metabolic balance, dysregulated autophagy has been found associated with multiple diseases, including cancer. Interestingly, the role of autophagy in cancer is two-sided; it can be pro- or antitumor. Autophagy can suppress tumor formation, for example, by controlling cell proliferation and the production of reactive oxygen species. On the other hand, autophagy can provide nutrients to the tumor cells to support tumor growth under nutrition-limiting conditions, thereby promoting tumor development. This ambivalent behavior is also evident in anticancer therapy: By inducing autophagic cell death, autophagy has been shown to potentiate the cytotoxicity of chemotherapeutic drugs, but autophagy has also been linked to drug resistance, since inhibiting autophagy has been found to sensitize tumor cells toward anticancer drug-induced cell death. In this chapter, we will focus on the dual role of autophagy in tumorigenesis and chemotherapy, will classify autophagy inducers and inhibitors used in anticancer treatment, and will discuss topics related to future drug development which have arisen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current chemotherapeutic treatment of alveolar echinococcosis (AE) in humans is based on albendazole and/or mebendazole. However, the costs of treatment, life-long consumption of drugs, parasitostatic rather than parasiticidal activity of chemotherapy, and high recurrence rates after treatment interruption warrant more efficient treatment options. Experimental treatment of mice infected with Echinococcus multilocularis metacestodes with fenbendazole revealed similar efficacy to albendazole. Inspection of parasite tissue from infected and benzimidazole-treated mice by transmission electron microscopy (TEM) demonstrated drug-induced alterations within the germinal layer of the parasites, and most notably an almost complete absence of microtriches. On the other hand, upon in vitro exposure of metacestodes to benzimidazoles, no phosphoglucose isomerase activity could be detected in medium supernatants during treatment with any of these drugs, indicating that in vitro treatment did not severely affect the viability of metacestode tissue. Corresponding TEM analysis also revealed a dramatic shortening/retraction of microtriches as a hallmark of benzimidazole action, and as a consequence separation of the acellular laminated layer from the cellular germinal layer. Since TEM did not reveal any microtubule-based structures within Echinococcus microtriches, this effect cannot be explained by the previously described mechanism of action of benzimidazoles targeting β-tubulin, thus benzimidazoles must interact with additional targets that have not been yet identified. In addition, these results indicate the potential usefulness of fenbendazole for the chemotherapy of AE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alpha-tocopheryl succinate (alpha-TOS), a redox-silent analogue of vitamin E, induces apoptosis in multiple cell lines in a selective manner, by activating the intrinsic pathway. Since it is a highly hydrophobic compound, it may require a carrier protein for its trafficking to intracellular targets like mitochondria. We studied the role of the ubiquitous tocopherol-associated protein-1 (TAP1 or sec14-like 2) in apoptosis induction by alpha-TOS in malignant mesothelioma (MM) cells. Over-expression of TAP1 in MM cells sensitised them to apoptosis by low doses of alpha-TOS which were sub-apoptotic for the parental cells. Apoptosis induced in TAP1-over-expressing cells was mitochondria- and caspase-dependent, as suggested by dissipation of mitochondrial trans-membrane potential and inhibition by zVAD-fmk, respectively. Binding assays showed affinity of alpha-TOS for TAP1. Finally, TAP1 over-expressing cells accumulated alpha-TOS at higher levels compared to their normal counterparts. We suggest that TAP1 may act as an intracellular shuttle for alpha-TOS, promoting apoptosis initiated by this vitamin E analogue, as shown here for MM cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucocorticosteroid-induced spinal osteoporosis (GIOP) is the most frequent of all secondary types of osteoporosis. The understanding of the pathophysiology of glucocorticoid (GC) induced bone loss is of crucial importance for appropriate treatment and prevention of debilitating fractures that occur predominantly in the spine. GIOP results from depressed bone formation due to lower activity and higher death rate of osteoblasts on the one hand, and from increase bone resorption due to prolonged lifespan of osteoclasts on the other. In addition, calcium/phosphate metabolism may be disturbed through GC effects on gut, kidney, parathyroid glands and gonads. Therefore, therapeutic agents aim at restoring balanced bone cell activity by directly decreasing apoptosis rate of osteoblasts (e.g., cyclical parathyroid hormone) or by increasing apoptosis rate of osteoclasts (e.g., bisphosphonates). Other therapeutical efforts aim at maintaining/restoring calcium/phosphate homeostasis: improving intestinal calcium absorption (using calcium supplementation, vitamin D and derivates) and avoiding increased urinary calcium loss (using thiazides) prevent or counteract a secondary hyperparthyroidism. Bisphosphonates, particularly the aminobisphosphonates risedronate and alendronate, have been shown to protect patients on GCs from (further) bone loss to reduce vertebral fracture risk. Calcitonin may be of interest in situation where bisphosphonates are contraindicated or not applicable and in cases where acute pain due to vertebral fracture has to be manage. The intermittent administration of 1-34-parathormone may be an appealing treatment alternative, based on its documented anabolic effects on bone resulting from the reduction of osteoblastic apoptosis. Calcium and vitamin D should be a systematic adjunctive measure to any drug treatment for GIOP. Based on currently available evidence, fluoride, androgens, estrogens (opposed or unopposed) cannot be recommended for the prevention and treatment of GIOP. However, substitution of gonadal hormones may be indicated if GC-induced hypogonadism is present and leads to clinical symptoms. Data using the SERM raloxifene to treat or prevent GIOP are lacking, as are data using the promising bone anabolic agent strontium ranelate. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abacavir hypersensitivity is a severe hypersensitivity reaction which occurs exclusively in carriers of the HLA-B*57∶01 allele. In vitro culture of PBMC with abacavir results in the outgrowth of abacavir-reacting CD8+ T cells, which release IFNγ and are cytotoxic. How this immune response is induced and what is recognized by these T cells is still a matter of debate. We analyzed the conditions required to develop an abacavir-dependent T cell response in vitro. The abacavir reactivity was independent of co-stimulatory signals, as neither DC maturation nor release of inflammatory cytokines were observed upon abacavir exposure. Abacavir induced T cells arose in the absence of professional APC and stemmed from naïve and memory compartments. These features are reminiscent of allo-reactivity. Screening for allo-reactivity revealed that about 5% of generated T cell clones (n = 136) from three donors were allo-reactive exclusively to the related HLA-B*58∶01. The addition of peptides which can bind to the HLA-B*57∶01-abacavir complex and to HLA-B*58∶01 during the induction phase increased the proportion of HLA-B*58∶01 allo-reactive T cell clones from 5% to 42%. In conclusion, abacavir can alter the HLA-B*57∶01-peptide complex in a way that mimics an allo-allele ('altered self-allele') and create the potential for robust T cell responses.