108 resultados para Cortico-cortical projection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Cortical gray matter thinning takes place during childhood due to pruning of inefficient synaptic connections and an increase in myelination. Alterations in brain structure occur in very preterm born children with prolonged maturation of the frontal lobes and smaller cortical and white matter volume. These findings give rise to the question if age affects cortical thinning differently in very preterm born children compared to controls. The aim of the present study was to investigate the relationship between age and cortical thickness in very preterm born children when compared to controls. Participants and Methods: Forty-one very preterm born children (<32 weeks gestational age and/or < 1500 gram birth weight) and 30term born controls were included in the study (7-12 years). The automated surface reconstruction software FreeSurfer was applied to obtain measurements of cortical thickness based on T1-weighted MRI images. Results: Cortical thickness was lower in bilateral frontal and left parietal regions and higher in left temporal gyri in very preterm born children compared to controls. However, these differences depended on age. In very preterm born children, age correlated negatively with cortical thickness in right frontal, parietal and inferior temporal regions. Accordingly, cortical thickness was higher in young compared to old very preterm born children in bilateral frontal, parietal and temporal regions. In controls, age was not associated with cortical thickness. Conclusions: In very preterm born children, cortical thinning still occurs between the age of 7 and 12 years, mainly in frontal and parietal areas. In controls, however, a substantial part of cortical thinning appears to be completed in these regions before they reach the age of 7 years. These data indicate a delay in cortical thinning in very preterm born children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cortical gray matter thinning occurs during childhood due to pruning of inefficient synaptic connections and an increase in myelination. Preterms show alterations in brain structure, with prolonged maturation of the frontal lobes, smaller cortical volumes and reduced white matter volume. These findings give rise to the question if there is a differential influence of age on cortical thinning in preterms compared to controls. Aims: To investigate the relationship between age and cortical thickness in preterms when compared to controls. Study design and outcome measures: The automated surface reconstruction software FreeSurfer was applied to obtain measurements of cortical thickness based on T1-weighted MRI images. Subjects: Forty-one preterms (< 32 weeks gestational age and/or < 1500 gram birth weight) and 30 controls were included in the study (7-12 years). Results: Cortical thickness was lower in bilateral frontal and left parietal regions and higher in left temporal gyri in preterms compared to controls. However, these differences depended on age. In preterms, age correlated negatively with cortical thickness in right frontal, parietal and inferior temporal regions. Accordingly, cortical thickness was higher in young compared to old preterms in bilateral frontal, parietal and temporal regions. In controls, age was not associated with cortical thickness. Conclusion: In preterms, cortical thinning still seems to occur between the age of 7 and 12 years, mainly in frontal and parietal areas whereas in controls, a substantial part of cortical thinning appears to be completed before they reach the age of 7 years. These data indicate slower cortical thinning in preterms than in controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to evaluate the hard and soft tissue parameters around implants supporting overdentures and the possible influence of increased periimplant bone density (IPBD) on implant success. MATERIALS AND METHODS: A total of 44 dental implants placed in the mandible of 12 patients were included in the study. Implants were divided in 2 groups in relation to the optically detected IPBD. Periimplant clinical and radiographic variables were collected over the period of 5 years. RESULTS: Periimplant clinical and radiographic parameters for all implants did not change significantly throughout the observation period (P > 0.05). Significant differences were observed between implants with and without IPBD for periimplant soft tissue parameters and Periotest values (P < 0.05). Implants with and without IPBD at 5-year control showed mean bone loss of 0.04 ± 0.48 mm and 0.55 ± 0.96 mm, respectively (P = 0.026). All density values decreased throughout the observation period, except maximal values for implants with IPBD that overcome the initial values at the 5-year control. CONCLUSIONS: Implants supporting overdentures were clinically successful over the period of follow-up. IPBD may be related to the maintenance of the periimplant bone level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present topical review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human non-verbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be both voluntarily or emotionally controlled. Recent studies in non-human primates and humans revealed that the motor control of facial expressions has a distributed neural representation. At least 5 cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and, finally, the rostral and caudal cingulate cortex. The results of studies in humans and non-human primates suggest that the innervation of the face is bilaterally controlled for the upper part, and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, since they receive input from different structures of the limbic system. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced β band (βB) activity, which is suppressed by levodopa (LD) treatment, has been demonstrated within the basal ganglia (BG) of Parkinson's disease (PD) patients. However, some data suggest that Parkinsonian symptoms are not directly related to this brain frequency and therefore, its causative role remains questionable. A less explored phenomenon is the link between the γ band (γB) and PD phenomenology. Here, we monitored the development of the oscillatory activity during chronic LD depletion and LD treatment in Parkinsonian and levodopa-induced dyskinesia (LID) in rats. We found a significant and bilateral power increase in the high βB frequencies (20-30Hz) within the first 10days after 6-hydroxydopamine (6-OHDA) lesion, which was in accordance with a significant depletion of dopaminergic fibers in the striatum. We also observed a clear-cut γB increase during LD treatment. The development of LID was characterized by a slight increase in the cumulative power of βB accompanied by a large augmentation in the γB frequency (60-80Hz). This latter effect reached a plateau in the frontal cortex bilaterally and the left globus pallidus after the second week of LD treatment. Our data suggest that the βB parallels the emergence of Parkinsonian signs and can be taken as a predictive sign of DA depletion, matching TH-staining reduction. On the other hand, the γB is strictly correlated to the development of LID. LD treatment had an opposite effect on βB and γB, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To investigate whether the effects of hybrid iterative reconstruction (HIR) on coronary artery calcium (CAC) measurements using the Agatston score lead to changes in assignment of patients to cardiovascular risk groups compared to filtered back projection (FBP). MATERIALS AND METHODS 68 patients (mean age 61.5 years; 48 male; 20 female) underwent prospectively ECG-gated, non-enhanced, cardiac 256-MSCT for coronary calcium scoring. Scanning parameters were as follows: Tube voltage, 120 kV; Mean tube current time-product 63.67 mAs (50 - 150 mAs); collimation, 2 × 128 × 0.625 mm. Images were reconstructed with FBP and with HIR at all levels (L1 to L7). Two independent readers measured Agatston scores of all reconstructions and assigned patients to cardiovascular risk groups. Scores of HIR and FBP reconstructions were correlated (Spearman). Interobserver agreement and variability was assessed with ĸ-statistics and Bland-Altmann-Plots. RESULTS Agatston scores of HIR reconstructions were closely correlated with FBP reconstructions (L1, R = 0.9996; L2, R = 0.9995; L3, R = 0.9991; L4, R = 0.986; L5, R = 0.9986; L6, R = 0.9987; and L7, R = 0.9986). In comparison to FBP, HIR led to reduced Agatston scores between 97 % (L1) and 87.4 % (L7) of the FBP values. Using HIR iterations L1 - L3, all patients were assigned to identical risk groups as after FPB reconstruction. In 5.4 % of patients the risk group after HIR with the maximum iteration level was different from the group after FBP reconstruction. CONCLUSION There was an excellent correlation of Agatston scores after HIR and FBP with identical risk group assignment at levels 1 - 3 for all patients. Hence it appears that the application of HIR in routine calcium scoring does not entail any disadvantages. Thus, future studies are needed to demonstrate whether HIR is a reliable method for reducing radiation dose in coronary calcium scoring.