123 resultados para Complement Cd4
Resumo:
Complement and the TLR family constitute two important branches of innate immunity. We previously showed attenuating effects on inflammation and thromogenicity by inhibiting the TLR coreceptor CD14 in porcine sepsis. In the present study, we explored the effect of the C5 and leukotriene B4 inhibitor Ornithodoros moubata complement inhibitor (OmCI; also known as coversin) alone and combined with anti-CD14 on the early inflammatory, hemostatic, and hemodynamic responses in porcine Escherichia coli-induced sepsis. Pigs were randomly allocated to negative controls (n = 6), positive controls (n = 8), intervention with OmCI (n = 8), or with OmCI and anti-CD14 (n = 8). OmCI ablated C5 activation and formation of the terminal complement complex and significantly decreased leukotriene B4 levels in septic pigs. Granulocyte tissue factor expression, formation of thrombin-antithrombin complexes (p < 0.001), and formation of TNF-α and IL-6 (p < 0.05) were efficiently inhibited by OmCI alone and abolished or strongly attenuated by the combination of OmCI and anti-CD14 (p < 0.001 for all). Additionally, the combined therapy attenuated the formation of plasminogen activator inhibitor-1 (p < 0.05), IL-1β, and IL-8, increased the formation of IL-10, and abolished the expression of wCD11R3 (CD11b) and the fall in neutrophil cell count (p < 0.001 for all). Finally, OmCI combined with anti-CD14 delayed increases in heart rate by 60 min (p < 0.05) and mean pulmonary artery pressure by 30 min (p < 0.01). Ex vivo studies confirmed the additional effect of combining anti-CD14 with OmCI. In conclusion, upstream inhibition of the key innate immunity molecules, C5 and CD14, is a potential broad-acting treatment regimen in sepsis as it efficiently attenuated inflammation and thrombogenicity and delayed hemodynamic changes.
Resumo:
BACKGROUND Besides α1,3-galactosyltransferase gene (GGTA1) knockout, several transgene combinations to prevent pig-to-human xenograft rejection are currently being investigated. In this study, the potential of combined overexpression of human CD46 and HLA-E to prevent complement- and NK-cell-mediated xenograft rejection was tested in an ex vivo pig-to-human xenoperfusion model. METHODS α1,3-Galactosyltransferase knockout heterozygous, hCD46/HLA-E double transgenic (transgenic) as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human and autologous pig blood, respectively. Blood samples were analyzed for the production of porcine and/or human inflammatory cytokines as well as complement activation products. Biopsy samples were examined for deposition of human and porcine C3b/c, C4b/c, and C6 as well as CD62E (E-selectin) and CD106 (VCAM-1) expression. Apoptosis was measured in the porcine muscle tissue using TUNEL assays. Finally, the formation of thrombin-antithrombin (TAT) complexes was measured in EDTA plasma samples. RESULTS No hyperacute rejection was seen in this model. Extremity perfusions lasted for up to 12 h without increase in vascular resistance and were terminated due to continuous small blood losses. Plasma levels of porcine cytokines IL1β, IL-6, IL-8, IL-10, TNF-α, and MCP-1 as well as human complement activation markers C3a (P = 0.0002), C5a (P = 0.004), and soluble C5b-9 (P = 0.03) were lower in blood perfused through transgenic as compared to wild-type limbs. Human C3b/c, C4b/c, and C6 as well as CD62E and CD106 were deposited in tissue of wild-type limbs, but significantly lower levels (P < 0.0001) of C3b/c, C4b/c, and C6 deposition as well as CD62E and CD106 expression were detected in transgenic limbs perfused with human blood. Transgenic porcine tissue was protected from xenoperfusion-induced apoptosis (P < 0.0001). Finally, TAT levels were significantly lower (P < 0.0001) in transgenic limb as compared to wild-type limb xenoperfusions. CONCLUSION Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since all, the terminal pathway of complement activation, endothelial cell activation, muscle cell apoptosis, inflammatory cytokine production, as well as coagulation activation, were all downregulated. Overall, this model represents a useful tool to study early immunological responses during pig-to-human vascularized xenotransplantation in the absence of hyperacute rejection.
Resumo:
Dendritic cells (DCs) and macrophages populate the intestinal lamina propria to initiate immune responses required for the maintenance of intestinal homeostasis. To investigate whether CX3CR1(+) phagocytes communicate with CD4 T cells during the development of transfer colitis, we established an antigen-driven colitis model induced by the adoptive transfer of DsRed OT-II cells in CX3CR1(GFP/+) × RAG(-/-) recipients challenged with Escherichia coli expressing ovalbumin (OVA) fused to a cyan fluorescent protein (CFP). After colonization of CX3CR1(GFP/+) × RAG(-/-) animals with red fluorescent E. coli pCherry-OVA, colonic CX3CR1(+) cells but not CD103(+) DCs phagocytosed E. coli pCherry-OVA. Degraded bacterial-derived antigens are transported by CD103(+) DCs to mesenteric lymph nodes (MLNs), where CD103(+) DCs prime naive T cells. In RAG(-/-) recipients reconstituted with OT II cells and gavaged with OVA-expressing E. coli, colonic CX3CR1(+) phagocytes are in close contact with CD4 T cells and presented bacterial-derived antigens to CD4 T cells to activate and expand effector T cells.
Resumo:
Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+) T cells and/or CD4(-) cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/-) CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS)-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/-) CD4 T cell accumulation in colonic lamina propria (cLP) was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/-) mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/-) CD45RB(high) CD4 T cells into RAG(-/-) hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.
Resumo:
INTRODUCTION According to reports from observational databases, classic AIDS-defining opportunistic infections (ADOIs) occur in patients with CD4 counts above 500/µL on and off cART. Adjudication of these events is usually not performed. However, ADOIs are often used as endpoints, for example, in analyses on when to start cART. MATERIALS AND METHODS In the database, Swiss HIV Cohort Study (SHCS) database, we identified 91 cases of ADOIs that occurred from 1996 onwards in patients with the nearest CD4 count >500/µL. Cases of tuberculosis and recurrent bacterial pneumonia were excluded as they also occur in non-immunocompromised patients. Chart review was performed in 82 cases, and in 50 cases we identified CD4 counts within six months before until one month after ADOI and had chart review material to allow an in-depth review. In these 50 cases, we assessed whether (1) the ADOI fulfilled the SHCS diagnostic criteria (www.shcs.ch), and (2) HIV infection with CD4 >500/µL was the main immune-compromising condition to cause the ADOI. Adjudication of cases was done by two experienced clinicians who had to agree on the interpretation. RESULTS More than 13,000 participants were followed in SHCS in the period of interest. Twenty-four (48%) of the chart-reviewed 50 patients with ADOI and CD4 >500/µL had an HIV RNA <400 copies/mL at the time of ADOI. In the 50 cases, candida oesophagitis was the most frequent ADOI in 30 patients (60%) followed by pneumocystis pneumonia and chronic ulcerative HSV disease (Table 1). Overall chronic HIV infection with a CD4 count >500/µL was the likely explanation for the ADOI in only seven cases (14%). Other reasons (Table 1) were ADOIs occurring during primary HIV infection in 5 (10%) cases, unmasking IRIS in 1 (2%) case, chronic HIV infection with CD4 counts <500/µL near the ADOI in 13 (26%) cases, diagnosis not according to SHCS diagnostic criteria in 7 (14%) cases and most importantly other additional immune-compromising conditions such as immunosuppressive drugs in 14 (34%). CONCLUSIONS In patients with CD4 counts >500/ µL, chronic HIV infection is the cause of ADOIs in only a minority of cases. Other immuno-compromising conditions are more likely explanations in one-third of the patients, especially in cases of candida oesophagitis. ADOIs in HIV patients with high CD4 counts should be used as endpoints only with much caution in studies based on observational databases.
Resumo:
Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain–Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain–Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
Resumo:
OBJECTIVES HIV infection has been associated with an increased risk of chronic kidney disease (CKD). Little is known about the prevalence of CKD in individuals with high CD4 cell counts prior to initiation of antiretroviral therapy (ART). We sought to address this knowledge gap. METHODS We describe the prevalence of CKD among 4637 ART-naïve adults (mean age 36.8 years) with CD4 cell counts > 500 cells/μL at enrolment in the Strategic Timing of AntiRetroviral Treatment (START) study. CKD was defined by estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m(2) and/or dipstick urine protein ≥ 1+. Logistic regression was used to identify baseline characteristics associated with CKD. RESULTS Among 286 [6.2%; 95% confidence interval (CI) 5.5%, 6.9%] participants with CKD, the majority had isolated proteinuria. A total of 268 participants had urine protein ≥ 1+, including 41 with urine protein ≥ 2+. Only 22 participants (0.5%) had an estimated glomerular filtration rate < 60 mL/min/1.73 m(2) , including four who also had proteinuria. Baseline characteristics independently associated with CKD included diabetes [adjusted odds ratio (aOR) 1.73; 95% CI 1.05, 2.85], hypertension (aOR 1.82; 95% CI 1.38, 2.38), and race/ethnicity (aOR 0.59; 95% CI 0.37, 0.93 for Hispanic vs. white). CONCLUSIONS We observed a low prevalence of CKD associated with traditional CKD risk factors among ART-naïve clinical trial participants with CD4 cell counts > 500 cells/μL.
Resumo:
OBJECTIVES Many paediatric antiretroviral therapy (ART) programmes in Southern Africa rely on CD4⁺ to monitor ART. We assessed the benefit of replacing CD4⁺ by viral load monitoring. DESIGN A mathematical modelling study. METHODS A simulation model of HIV progression over 5 years in children on ART, parameterized by data from seven South African cohorts. We simulated treatment programmes with 6-monthly CD4⁺ or 6- or 12-monthly viral load monitoring. We compared mortality, second-line ART use, immunological failure and time spent on failing ART. In further analyses, we varied the rate of virological failure, and assumed that the rate is higher with CD4⁺ than with viral load monitoring. RESULTS About 7% of children were predicted to die within 5 years, independent of the monitoring strategy. Compared with CD4⁺ monitoring, 12-monthly viral load monitoring reduced the 5-year risk of immunological failure from 1.6 to 1.0% and the mean time spent on failing ART from 6.6 to 3.6 months; 1% of children with CD4⁺ compared with 12% with viral load monitoring switched to second-line ART. Differences became larger when assuming higher rates of virological failure. When assuming higher virological failure rates with CD4⁺ than with viral load monitoring, up to 4.2% of children with CD4⁺ compared with 1.5% with viral load monitoring experienced immunological failure; the mean time spent on failing ART was 27.3 months with CD4⁺ monitoring and 6.0 months with viral load monitoring. Conclusion: Viral load monitoring did not affect 5-year mortality, but reduced time on failing ART, improved immunological response and increased switching to second-line ART.
Resumo:
MASP-1 is a versatile serine protease that cleaves a number of substrates in human blood. In recent years it became evident that besides playing a crucial role in complement activation MASP-1 also triggers other cascade systems and even cells to mount a more powerful innate immune response. In this review we summarize the latest discoveries about the diverse functions of this multi-faceted protease. Recent studies revealed that among MBL-associated serine proteases, MASP-1 is the one responsible for triggering the lectin pathway via its ability to rapidly autoactivate then cleave MASP-2, and possibly MASP-3. The crystal structure of MASP-1 explains its more relaxed substrate specificity compared to the related complement enzymes. Due to the relaxed specificity, MASP-1 interacts with the coagulation cascade and the kinin generating system, and it can also activate endothelial cells eliciting pro-inflammatory signaling.
Resumo:
Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses.
Resumo:
Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.