205 resultados para Câmbio vascular
Resumo:
TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.
Resumo:
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is amenable to only few treatments. Inhibitors of the kinase mTOR are a new class of immunosuppressors already in use after liver transplantation. Their antiproliferative and antiangiogenic properties suggest that these drugs could be considered to treat HCC. We investigated the antitumoral effects of mTOR inhibition in a HCC model. METHODS: Hepatoma cells were implanted into livers of syngeneic rats. Animals were treated with the mTOR inhibitor sirolimus for 4 weeks. Tumor growth was monitored by MR imaging. Antiangiogenic effects were assessed in vivo by microvessel density and corrosion casts and in vitro by cell proliferation, tube formation and aortic ring assays. RESULTS: Treated rats had significantly longer survival and developed smaller tumors, fewer extrahepatic metastases and less ascites than controls. Sirolimus decreased intratumoral microvessel density resulting in extensive necrosis. Endothelial cell proliferation was inhibited at lower drug concentrations than hepatoma cells. Tube formation and vascular sprouting of aortic rings were significantly impaired by mTOR inhibition. Casts revealed that in tumors treated with sirolimus vascular sprouting was absent, whereas intussusception was observed. CONCLUSIONS: mTOR inhibition significantly reduces HCC growth and improves survival primarily via antiangiogenic effects. Inhibitors of mTOR may have a role in HCC treatment.
Resumo:
PURPOSE: To evaluate the acute and midterm effectiveness of a novel vascular occlusion device for embolization of the internal iliac artery (IIA) before endovascular repair of aortoiliac aneurysms. MATERIALS AND METHODS: Between March 2005 and April 2006, nine men (mean age, 75 years +/- 5; range, 66-83 y) with aortoiliac aneurysms underwent bifurcated endovascular stent-graft procedures. All these patients were referred specifically for embolization. Pre- and perioperatively, eight patients underwent unilateral embolization and one underwent bilateral embolization of the IIA to prevent type II endoleak. Via a contralateral femoral approach with a 6-F or 8-F sheath, the embolization procedure was performed with an Amplatzer Vascular Plug, a self-expandable cylindrical device consisting of a nitinol-based wire mesh. Technical success, clinical outcome, and complications were evaluated. Follow-up at 3, 6, and 12 months was performed with clinical and radiologic examinations. RESULTS: IIA embolization was technically successful in all cases and no procedure-related complications occurred. Imaging at discharge and at 3-, 6-, or 12-month follow-up was accomplished in all nine patients. Control computed tomography and magnetic resonance angiography did not reveal retrograde perfusion of the aneurysmal sac, ie, type II endoleak. Three of nine patients (33.3%) reported symptoms of buttock claudication that did not resolve completely. Clinical symptoms such as bowel ischemia or sexual dysfunction were not observed. CONCLUSIONS: The midterm results of this study suggest that preoperative IIA embolization with a nitinol vascular occlusion plug during endovascular treatment of aortoiliac aneurysms is safe and effective.
Resumo:
Adverse cardiovascular events are the consequence of a molecular chain reaction at the site of vulnerable plaques. Key players are platelets and coagulation factors that are activated following plaque rupture and often cause arterial obstruction. Thrombin, a plasma serine protease, plays a role in hemostasis of coagulation as well as in thrombosis and cell growth, leading to restenosis and atherosclerosis. Interesting and promising new molecules, the direct thrombin inhibitors, have been shown to be as effective as the combination of glycoprotein IIb-IIIa inhibitors and heparin for the prevention of arterial thrombosis. Until recently, direct thrombin inhibitors could be applied only parenterally; therefore, therapy was limited to hospitalized patients. As a result of recent drug development, orally active direct thrombin inhibitors are now available and have been evaluated for the long-term treatment of venous thrombosis and arterial fibrillation. Due to their specific pharmacodynamic characteristics by binding directly to thrombin--and thus inhibiting platelet aggregation and fibrin generation--these novel drugs may also have therapeutic potential for the treatment of atherothrombotic disease and its complications such as myocardial infarction, stroke or limb ischemia.
Resumo:
BACKGROUND: Paclitaxel-eluting stents (PES) have been shown to reduce the rate of restenosis and the need for repeated revascularization procedures compared with bare metal stents. However, long-term effects of paclitaxel on vascular function are unknown. The purpose of the present study was to assess coronary vasomotor response to exercise after paclitaxel-eluting stent implantation. METHODS: Coronary vasomotion was evaluated by biplane quantitative coronary angiography at rest and during supine bicycle exercise in 27 patients with coronary artery disease. Twelve patients were treated with a bare metal stent (controls), and fifteen patients with a paclitaxel-eluting stent. All patients were restudied 6+/-2 (range 2-12) months after stent implantation. Minimal luminal diameter, stent diameter, proximal, distal and a reference vessel diameter were determined. RESULTS: Reference vessels showed exercise-induced vasodilation in both groups (+20+/-5% controls; +26+/-3% PES group). Vasomotion within the stented vessel segments was abolished. In the controls, the adjacent segments proximal and distal to the stent showed exercise-induced vasodilation (+17+/-3% and +24+/-4%). In contrast, there was exercise-induced vasoconstriction of the proximal and distal vessel segments adjacent to the paclitaxel-eluting stent (-13+/-6% and -18+/-4%; p<0.005). After sublingual nitroglycerin, the proximal and distal vessel segments dilated in both groups. Exercise-induced vasoconstriction adjacent to paclitaxel-eluting stent correlated inversely with the time interval after stent implantation. CONCLUSIONS: Paclitaxel-eluting stent implantation is associated with exercise-induced vasoconstriction in the persistent region suggesting endothelial dysfunction as the underlying mechanism. Improvement of vascular function occurs over time, indicating delayed vascular healing.
Resumo:
Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.
Resumo:
OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.
Resumo:
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.
Resumo:
Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.
Resumo:
In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages. When these mice were crossed to Rip1Tag2 mice, VEGF-D-expressing tumors also exhibited peritumoral lymphangiogenesis with lymphocyte accumulations and hemorrhages, and they frequently developed lymph node and lung metastases. Notably, tumor outgrowth and blood microvessel density were significantly reduced in VEGF-D-expressing tumors. Our results demonstrate that VEGF-D induces lymphangiogenesis, promotes metastasis to lymph nodes and lungs, and yet represses hemangiogenesis and tumor outgrowth. Because a comparable transgenic expression of vascular endothelial growth factor-C (VEGF-C) in Rip1Tag2 has been shown previously to provoke lymphangiogenesis and lymph node metastasis in the absence of any distant metastasis, leukocyte infiltration, or angiogenesis-suppressing effects, these results reveal further functional differences between VEGF-D and VEGF-C.
Resumo:
Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the beta tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth.
Resumo:
OBJECTIVE: Vasa vasorum (VV) have been implicated to play a role in the pathogenesis of atherosclerosis. This study was designed to describe the distribution of VV density in different vascular beds in humans and to investigate the association between VV density and the known distribution of atherosclerosis in human arteries. METHODS: Forty-two human arteries, harvested at autopsy or after explantation, were analyzed by three-dimensional microscopic-computed tomography (micro-CT). VV density, endothelial-surface-fraction (Sigma VV endothelial-surface-area/vessel-wall-volume) and vascular-area-fraction (Sigma VV area/vessel-wall-area) were calculated for coronary, renal and femoral arteries. Representatively five coronary, renal and femoral arteries were stained for endothelial cells (von Willebrand-Factor), macrophages (CD68), vascular endothelial growth factor (VEGF) and collagen (Sirius Red). RESULTS: Coronary arteries showed a higher VV density compared to renal and femoral arteries (2.12+/-0.26 n/mm(2) versus 0.61+/-0.06 n/mm(2) and 0.66+/-0.11 n/mm(2); P<0.05 for both) as well as a higher endothelial-surface-fraction and vascular-area-fraction. Histology showed a positive correlation between histologically derived VV density and CD68-positive cells/area (r=0.54, P<0.01), VEGF-immunoreactivity/area (r=0.55, P<0.01) and a negative correlation between VV density and collagen I content (r=0.66, P<0.05). CONCLUSION: This micro-CT study highlights a higher VV density in coronary than in peripheral arteries, supporting the relation between VV density and the susceptibility to atherosclerosis in different vascular beds in humans.
Resumo:
BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.