112 resultados para Bicoronal flap
Resumo:
OBJECTIVES The aim of the study was to clinically and histologically evaluate the healing of human intrabony defects treated with open flap surgery (OFD) and application of a new, resorbable, fully synthetic, unsintered, nanocrystalline, phase-pure hydroxyapatite (nano-HA). MATERIALS AND METHODS Six patients, each of them displaying very advanced intrabony defects around teeth scheduled for extraction due to advanced chronic periodontitis and further prosthodontic considerations, were included in the study. Following local anaesthesia, mucoperiosteal flaps were reflected; the granulation tissue was removed, and the roots were meticulously debrided by hand and ultrasonic instruments. A notch was placed at the most apical extent of the calculus present on the root surface or at the most apical part of the defect (if no calculus was present) in order to serve as a reference for the histological evaluation. Following defect fill with nano-HA, the flaps were sutured by means of mattress sutures to allow primary intention healing. At 7 months after regenerative surgery, the teeth were extracted together with some of their surrounding soft and hard tissues and processed for histological analysis. RESULTS The postoperative healing was uneventful in all cases. At 7 months following surgery, mean PPD reduction and mean CAL gain measured 4.0 ± 0.8 and 2.5 ± 0.8 mm, respectively. The histological analysis revealed a healing predominantly characterized by epithelial downgrowth. Limited formation of new cementum with inserting connective tissue fibers and bone regeneration occurred in three out of the six biopsies (i.e. 0-0.86 and 0-1.33 mm, respectively). Complete resorption of the nano-HA was found in four out of the six biopsies. A few remnants of the graft particles (either surrounded by newly formed mineralized tissue or encapsulated in connective tissue) were found in two out of the six biopsies. CONCLUSION Within their limits, the present results indicate that nano-HA has limited potential to promote periodontal regeneration in human intrabony defects. CLINICAL RELEVANCE The clinical outcomes obtained following surgery with OFD + nano-HA may not reflect true periodontal regeneration.
Resumo:
The present study reports on the surgical and prosthodontic rehabilitation of 46 patients, 31 male and 15 female, after resection of oral tumors. The treatment was carried out from 2004 to 2007 at the Department of Prosthodontics, University of Bern, with a follow-up time of 3 to 6 years. The average age at diagnosis was 54 years. 76% of all tumors were squamous cell carcinoma, followed by adenocarcinoma. Resection of the tumors including soft and/or hard tissues was performed in all patients. 80% of them additionally underwent radiotherapy and 40% chemotherapy. A full block resection of the mandible was perfomed in 23 patients, and in 10 patients, the tumor resection resulted in an oronasal communication. 29 patients underwent grafting procedures, mostly consisting of a free fibula flap transplant. To enhance the prosthetic treatment outcome and improve the prosthesis stability, a total of 114 implants were placed. However, 14 implants were not loaded because they failed during the healing period or the patient could not complete the final treatment with the prostheses. The survival rate of the implants reached 84.2% after 4 to 5 years. Many patients were only partially dentate before the tumors were detected, and further teeth had to be extracted in the course of the tumor therapy. Altogether, 31 jaws became or remained edentulous. Implants provide stability and may facilitate the adaptation to the denture, but their survival rate was compromised. Mostly, patients were fitted with removable prostheses with obturators in the maxilla and implant-supported complete dentures with bars in the mandible. Although sequelae of tumor resection are similar in many patients, the individual intermaxillary relations, facial morphology and functional capacity vary significantly. Thus, individual management is required for prosthetic rehabilitation.
Resumo:
OBJECTIVES Pain control after thoracotomy is an important issue that affects the outcome in thoracic surgery. Intercostal nerve preservation (ICNP) has increased interest in the outcomes of conventional thoracotomy. The current study critically evaluates the role of preservation of the intercostal nerve in early and late pain control and its benefit in patients undergoing thoracotomy. METHODS Data obtained prospectively between January 2006 and December 2010 by a study colleague at our division of General Thoracic Surgery were retrospectively analysed. There were 491 patients who underwent thoracotomy. Eighty-one patients were excluded from the study due to incompatible data. Patients were divided into two groups according to the intercostal nerve state: Group I consisted of patients with ICNP and Group II consisted of patients with intercostal nerve sacrifice. RESULTS Group I consisted of 288 patients [206 male (71%), P < 0.001, mean age 66 years]. Group II consisted of 122 patients [79 male (64%), P = 0.001, mean age 66 years]. There was less use of opiate in Group I (P = 0.019). Early mobilization of the patients was significantly higher in Group I (P = 0.031). The rate of pneumonia and re-admission to the intensive care unit was higher in Group II (P = 0.017 and 0.023, respectively). The rate of pain-free patients at discharge was significantly higher in Group I (P = 0.028). A 2-week follow-up after hospital discharge showed parasternal hypoesthesia to be more in Group II (P = 0.034). Significant patient contentment in Group I was noticed (P = 0.014). Chronic post-thoracotomy pain (CPTP) was higher in Group II (P = 0.016). CONCLUSIONS ICNP without harvesting an intercostal muscle flap achieves excellent outcomes in controlling acute post-thoracotomy pain and CPTP. ICNP is an effective, simple method to perform, and it should be considered as standard in performing thoracotomy.
Resumo:
BACKGROUND Botulinum toxin (BTX) A and B are commonly used for aesthetic indications and in neuromuscular disorders. New concepts seek to prove efficacy of BTX for critical tissue perfusion. Our aim was to evaluate BTX A and B in a mouse model of critical flap ischemia for preoperative and intraoperative application. METHODS BTX A and B were applied on the vascular pedicle of an axial pattern flap in mice preoperatively or intraoperatively. Blood flow, tissue oxygenation, tissue metabolism, flap necrosis rate, apoptosis assay, and RhoA and eNOS expression were endpoints. RESULTS Blood-flow measurements 1 d after the flap operation revealed a significant reduction to 53% in the control group, while flow was maintained or increased in all BTX groups (103%-129%). Over 5 d all BTX groups showed significant increase in blood flow to 166-187% (P < 0.01). Microdialysis revealed an increase of glucose and reduced lactate/pyruvate ratio and glycerol levels in the flap tissue of all BTX groups. This resulted in significantly improved tissue survival in all BTX groups compared with the control group (62% ± 10%; all P < 0.01): BTX A preconditioning (84% ± 5%), BTX A application intraoperatively (88% ± 4%), BTX B preconditioning (91% ± 4%), and intraoperative BTX B treatment (92% ± 5%). This was confirmed by TUNEL assay. Immunofluorescence demonstrated RhoA and eNOS expression in BTX groups. All BTX applications were similarly effective, despite pharmacologic dissimilarities and different timing. CONCLUSIONS In conclusion, we were able to show on a vascular, tissue, cell, and molecular level that BTX injection to the feeding arteries supports flap survival through ameliorated blood flow and oxygen delivery.
Resumo:
The focus of this article was to explore the translocation of Cd-109, Co-57, Zn-65, Ni-63, and Cs-134 via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of Cd-109, Co-57, and Zn-65 labeled by roots, and the redistribution of Cd-109, Zn-65, Co-57, Ni-63, and Cs-134 using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that Cd-109 added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, Co-57 was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. Zn-65 was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested (Cd-109, Co-57, Zn-65, Ni-63, Cs-134) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for Ni-63 and Zn-65, while a relatively high percentage of Co-57 was finally found in the roots. Cs-134 was roughly in the middle of them. The transport of Cd-109 differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium.
Resumo:
OBJECTIVES To evaluate the effectiveness of rhinotomy and surgical debridement associated with topical administration of 2 per cent enilconazole and oral itraconazole in dogs with severe or recurrent sinonasal aspergillosis. METHODS A standard rhinotomy was performed on seven dogs. In the initial study, the bone flap was left attached cranially and replaced at the end of the procedure. In the main study group, the bone flap was discarded. Nasal passages were debrided and irrigated with enilconazole solution for one hour. Oral itraconazole was administered to four dogs for one month postoperatively. Follow-up rhinoscopy was performed in all dogs. RESULTS All three dogs in the initial study had recurrence of the disease and two dogs had a second surgery to remove the flap. The main study group included four dogs in which the flap was initially removed, and the two dogs from the initial study that required a second surgery. At follow-up rhinoscopy, five dogs were free of aspergillus but had bacterial or inflammatory rhinitis and one dog had a small aspergilloma but was subsequently asymptomatic. Telephone follow-up revealed that four dogs were asymptomatic, one dog had intermittent sneezing and serous nasal discharge, and one dog had intermittent epistaxis. CLINICAL SIGNIFICANCE Rhinotomy with removal of the flap combined with one-hour infusion of 2 per cent enilconazole and oral itraconazole resulted in satisfactory outcome in dogs with severe or recurrent aspergillosis.
Resumo:
AIM To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. MATERIAL AND METHODS This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. RESULTS AND CONCLUSIONS The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites.
Resumo:
OBJECTIVE To systematically analyze the regenerative effect of the available biomaterials either alone or in various combinations for the treatment of periodontal intrabony defects as evaluated in preclinical histologic studies. DATA SOURCES A protocol covered all aspects of the systematic review methodology. A literature search was performed in Medline, including hand searching. Combinations of searching terms and several criteria were applied for study identification, selection, and inclusion. The preliminary outcome variable was periodontal regeneration after reconstructive surgery obtained with the various regenerative materials, as demonstrated through histologic/ histomorphometric analysis. New periodontal ligament, new cementum, and new bone formation as a linear measurement in mm or as a percentage of the instrumented root length were recorded. Data were extracted based on the general characteristics, study characteristics, methodologic characteristics, and conclusions. Study selection was limited to preclinical studies involving histologic analysis, evaluating the use of potential regenerative materials (ie, barrier membranes, grafting materials, or growth factors/proteins) for the treatment of periodontal intrabony defects. Any type of biomaterial alone or in various combinations was considered. All studies reporting histologic outcome measures with a healing period of at least 6 weeks were included. A meta-analysis was not possible due to the heterogeneity of the data. CONCLUSION Flap surgery in conjunction with most of the evaluated biomaterials used either alone or in various combinations has been shown to promote periodontal regeneration to a greater extent than control therapy (flap surgery without biomaterials). Among the used biomaterials, autografts revealed the most favorable outcomes, whereas the use of most biologic factors showed inferior results compared to flap surgery.
Resumo:
A tightly attached keratinized mucosa around endosseous dental implants is believed to be protective against peri-implant bone loss. Tension caused by buccal frena and mobile non keratinized mucosa is to avoid. This case report documents the optimization of peri-implant mucosal conditions in the upper and lower jaw. At the time of second stage surgery (re-entry) at submucosally osseointegrated dental implants an enlargement of keratinized mucosa and a thickening of soft tissue was obtained administrating a vestibuloplasty combined by a free gingival graft or a vestibuloplasty combined by an apically moved flap.
Resumo:
AIMS Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. METHODS AND RESULTS We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. CONCLUSION Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
BACKGROUND: Contemporary pacemakers (PMs) are powered by primary batteries with a limited energy-storing capacity. PM replacements because of battery depletion are common and unpleasant and bear the risk of complications. Batteryless PMs that harvest energy inside the body may overcome these limitations. OBJECTIVE: The goal of this study was to develop a batteryless PM powered by a solar module that converts transcutaneous light into electrical energy. METHODS: Ex vivo measurements were performed with solar modules placed under pig skin flaps exposed to different irradiation scenarios (direct sunlight, shade outdoors, and indoors). Subsequently, 2 sunlight-powered PMs featuring a 4.6-cm2 solar module were implanted in vivo in a pig. One prototype, equipped with an energy buffer, was run in darkness for several weeks to simulate a worst-case scenario. RESULTS: Ex vivo, median output power of the solar module was 1963 μW/cm2 (interquartile range [IQR] 1940-2107 μW/cm2) under direct sunlight exposure outdoors, 206 μW/cm2 (IQR 194-233 μW/cm2) in shade outdoors, and 4 μW/cm2 (IQR 3.6-4.3 μW/cm2) indoors (current PMs use approximately 10-20 μW). Median skin flap thickness was 4.8 mm. In vivo, prolonged SOO pacing was performed even with short irradiation periods. Our PM was able to pace continuously at a rate of 125 bpm (3.7 V at 0.6 ms) for 1½ months in darkness. CONCLUSION: Tomorrow's PMs might be batteryless and powered by sunlight. Because of the good skin penetrance of infrared light, a significant amount of energy can be harvested by a subcutaneous solar module even indoors. The use of an energy buffer allows periods of darkness to be overcome.
Resumo:
Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.
Resumo:
BACKGROUND The use of an enamel matrix derivative (EMD) has been shown to enhance periodontal regeneration (e.g., formation of root cementum, periodontal ligament, and alveolar bone). However, in certain clinical situations, the use of EMD alone may not be sufficient to prevent flap collapse or provide sufficient stability of the blood clot. Data from clinical and preclinical studies have demonstrated controversial results after application of EMD combined with different types of bone grafting materials in periodontal regenerative procedures. The aim of the present study is to investigate the adsorption properties of enamel matrix proteins to bone grafts after surface coating with either EMD (as a liquid formulation) or EMD (as a gel formulation). METHODS Three different types of grafting materials, including a natural bone mineral (NBM), demineralized freeze-dried bone allograft (DFDBA), or a calcium phosphate (CaP), were coated with either EMD liquid or EMD gel. Samples were analyzed by scanning electron microscopy or transmission electron microscopy (TEM) using an immunostaining assay with gold-conjugated anti-EMD antibody. Total protein adsorption to bone grafting material was quantified using an enzyme-linked immunosorbent assay (ELISA) kit for amelogenin. RESULTS The adsorption of amelogenin to the surface of grafting material varied substantially based on the carrier system used. EMD gel adsorbed less protein to the surface of grafting particles, which easily dissociated from the graft surface after phosphate-buffered saline rinsing. Analyses by TEM revealed that adsorption of amelogenin proteins were significantly farther from the grafting material surface, likely a result of the thick polyglycolic acid gel carrier. ELISA protein quantification assay demonstrated that the combination of EMD liquid + NBM and EMD liquid + DFDBA adsorbed higher amounts of amelogenin than all other treatment modalities. Furthermore, amelogenin proteins delivered by EMD liquid were able to penetrate the porous surface structure of NBM and DFDBA and adsorb to the interior of bone grafting particles. Grafting materials coated with EMD gel adsorbed more frequently to the exterior of grafting particles with little interior penetration. CONCLUSIONS The present study demonstrates a large variability of adsorbed amelogenin to the surface of bone grafting materials when enamel matrix proteins were delivered in either a liquid formulation or gel carrier. Furthermore, differences in amelogenin adsorption were observed among NBM, DFDBA, and biphasic CaP particles. Thus, the potential for a liquid carrier system for EMD, used to coat EMD, may be advantageous for better surface coating.
Resumo:
OBJECTIVE To evaluate the role of the periosteum in preserving the buccal bone after ridge splitting and expansion with simultaneous implant placement. MATERIAL AND METHODS In 12 miniature pigs, the mandibular premolars and first molars were removed together with the interdental bone septa and the buccal bone. Three months later, ridge splitting and expansion of the buccal plate was performed with simultaneous placement of two titanium implants per quadrant. Access by a mucosal flap (MF) was prepared on test sides, while a mucoperiosteal flap (MPF) with complete denudation of the buccal bone was increased on control sides. After healing periods of six and 12 weeks, the animals were sacrificed for histologic and histometric evaluation. RESULTS In the MF group, all 16 implants were osseointegrated, while in the MPF group, four of 16 implants were lost. Noticeable differences of bone levels on the implant surface and of the bone crest (BC) were found between the MF and the MPF group. Buccally after 6 weeks, the median distance between the implant shoulder (IS) and the coronal-most bone on the implant (cBIC) was for the MF group -1.42 ± 0.42 mm and for the MPF group -4.80 ± 2.72 mm (P = 0.15). The median distance between the IS and the buccal BC was -1.24 ± 0.51 mm and -2.78 ± 1.98 mm (P = 0.12) for the MF and MPF group, respectively. After 12 weeks, median IS-cBIC was -2.12 ± 0.84 mm for MF and -7.19 mm for MPF, while IS-BC was -2.08 ± 0.79 mm for MF and -5.96 mm for MPF. After 6 weeks, the median buccal bone thickness for MF and MPF was 0.01 and 0 mm (P < 0.001) at IS, 1.48 ± 0.97 mm and 0 ± 0.77 mm (P = 0.07) at 2 mm apical to IS, and 2.12 ± 1.19 mm and 1.72 ± 01.50 mm (P = 0.86) at 4 mm apical to IS, respectively. After 12 weeks, buccal bone thickness in the MF group was 0 mm at IS, 0.21 mm at 2 mm apical to IS, and 2.56 mm at 4 mm apical to IS, whereas complete loss of buccal bone was measured from IS to 4 mm apical to IS for the MPF group. CONCLUSIONS In this ridge expansion model in miniature pigs, buccal bone volume was significantly better preserved when the periosteum remained attached to the bone.