134 resultados para Beyond Standard Model
Resumo:
The results of a search for an excited bottom-quark b* in pp collisions at root s = 7 TeV, using 4.7 fb(-1) of data collected by the ATLAS detector at the LHC are presented. In the model studied, a single b*-quark is produced through a chromomagnetic interaction and subsequently decays to a W boson and a top quark. The search is performed in the dilepton and lepton + jets final states, which are combined to set limits on b*-quark couplings for a range of b*-quark masses. For a benchmark with unit size chromomagnetic and Standard Model-like electroweak b* couplings, b* quarks with masses less than 870 GeV are excluded at the 95% credibility level.
Resumo:
The large difference between the Planck scale and the electroweak scale, known as the hierarchy problem, is addressed in certain models through the postulate of extra spatial dimensions. A search for evidence of extra spatial dimensions in the diphoton channel has been performed using the full set of proton-proton collisions at root s = 7 TeV recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. This dataset corresponds to an integrated luminosity of 4.9 fb(-1). The diphoton invariant mass spectrum is observed to be in good agreement with the Standard Model expectation. In the context of the model proposed by Arkani-Hamed, Dimopoulos and Dvali, 95% confidence level lower limits of between 2.52 and 3.92 TeV are set on the ultraviolet cutoff scale MS depending on the number of extra dimensions and the theoretical formalism used. In the context of the Randall-Sundrum model, a lower limit of 2.06 (1.00) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of k/(M) over bar (Pl) = 0.1(0.01). Combining with the ATLAS dilepton searches based on the 2011 data, the 95% confidence level lower limit on the Randall-Sundrum graviton mass is further tightened to 2.23 (1.03) TeV for k/(M) over bar (Pl) = 0.1(0.01).
Resumo:
Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. In this Letter, results are presented of a search for events containing one or more such particles, which decay at a significant distance from their production point, using a final state containing charged hadrons and an associated muon. This analysis uses a data sample of proton-proton collisions at root s = 7 TeV corresponding to an integrated luminosity of 4.4 fb(-1) collected in 2011 by the ATLAS detector operating at the Large Hadron Collider. Results are interpreted in the context of R-parity violating supersymmetric scenarios. No events in the signal region are observed and limits are set on the production cross section for pair production of supersymmetric particles, multiplied by the square of the branching fraction for a neutralino to decay to charged hadrons and a muon, based on the scenario where both of the produced supersymmetric particles give rise to neutralinos that decay in this way. However, since the search strategy is based on triggering on and reconstructing the decay products of individual long-lived particles, irrespective of the rest of the event, these limits can easily be reinterpreted in scenarios with different numbers of long-lived particles per event. The limits are presented as a function of neutralino lifetime, and for a range of squark and neutralino masses.
Resumo:
This Letter presents a search for high-mass resonances decaying into tau(+)tau(-) final states using proton-proton collisions at root s = 7 TeV produced by the Large Hadron Collider. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.6 fb(-1). No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into tau(+)tau(-) pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 1.40 TeV are excluded at 95% credibility.
Resumo:
A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming a significant branching ratio for subsequent decay into a W boson and a b quark. The search is based on 4.7 fb(-1) of pp collisions root s = 7 TeV recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton + jets final state, characterized by a high-transverse-momentum isolated electron or muon, large missing transverse momentum and at least three jets. The analysis strategy relies on the substantial boost of the W bosons in the t'(t') over bar signal when m(t') greater than or similar to 400 GeV. No significant excess of events above the Standard Model expectation is observed and the result of the search is interpreted in the context of fourth-generation and vector-like quark models. Under the assumption of a branching ratio BR(t' -> W b) = I, a fourth-generation t' quark with mass lower than 656 GeV is excluded at 95% confidence level. In addition, in light of the recent discovery of a new boson of mass similar to 126 GeV at the LHC, upper limits are derived in the two-dimensional plane of BR(t' -> Wb) versus BR(t' -> Ht), where H is the Standard Model Higgs boson, for vector-like quarks of various masses.
Resumo:
A search for pair-produced massive coloured scalar particles decaying to a four-jet final state is performed by the ATLAS experiment at the LHC in proton-proton collisions at root s = 7 TeV. The analysed data sample corresponds to an integrated luminosity of 4.6 fb(-1). No deviation from the Standard Model is observed in the invariant mass spectrum of the two-jet pairs. A limit on the scalar gluon pair production cross section of 70 pb (10 pb) is obtained at the 95 % confidence level for a scalar gluon mass of 150 GeV (350 GeV). Interpreting these results as mass limits on scalar gluons, masses ranging from 150 GeV to 287 GeV are excluded at the 95 % confidence level.
Resumo:
A search is presented for new particles in an extension to the Standard Model that includes a heavy Higgs boson (H-0), an intermediate charged Higgs-boson pair (H-+/-), and a light Higgs boson (h(0)). The analysis searches for events involving the production of a single heavy neutral Higgs boson which decays to the charged Higgs boson and a W boson, where the charged Higgs boson subsequently decays into a W boson and the lightest neutral Higgs boson decaying to a bottom-antibottom-quark pair. Such a cascade results in a W-boson pair and a bottom-antibottom-quark pair in the final state. Events with exactly one lepton, missing transverse momentum, and at least four jets are selected from a data sample corresponding to an integrated luminosity of 20.3 fb(-1), collected by the ATLAS detector in proton-proton collisions at root s = 8 TeV at the LHC. The data are found to be consistent with Standard Model predictions, and 95% confidence-level upper limits are set on the product of cross section and branching ratio. These limits range from 0.065 to 43 pb as a function of H-0 and H-+/- masses, with m(h)o fixed at 125 GeV.
Resumo:
A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at root s = 8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.
Resumo:
The rates for lepton number washout in extensions of the Standard Model containing right-handed neutrinos are key ingredients in scenarios for baryogenesis through leptogenesis. We relate these rates to real-time correlation functions at finite temperature, without making use of any particle approximations. The relations are valid to quadratic order in neutrino Yukawa couplings and to all orders in Standard Model couplings. They take into account all spectator processes, and apply both in the symmetric and in the Higgs phase of the electroweak theory. We use the relations to compute washout rates at next-to-leading order in g, where g denotes a Standard Model gauge or Yukawa coupling, both in the non-relativistic and in the relativistic regime. Even in the non-relativistic regime the parametrically dominant radiative corrections are only suppressed by a single power of g. In the non-relativistic regime radiative corrections increase the washout rate by a few percent at high temperatures, but they are of order unity around the weak scale and in the relativistic regime.
Resumo:
Compared to μ→eγ and μ→eee, the process μ→e conversion in nuclei receives enhanced contributions from Higgs-induced lepton flavor violation. Upcoming μ→e conversion experiments with drastically increased sensitivity will be able to put extremely stringent bounds on Higgs-mediated μ→e transitions. We point out that the theoretical uncertainties associated with these Higgs effects, encoded in the couplings of quark scalar operators to the nucleon, can be accurately assessed using our recently developed approach based on SU(2) chiral perturbation theory that cleanly separates two- and three-flavor observables. We emphasize that with input from lattice QCD for the coupling to strangeness fNs, hadronic uncertainties are appreciably reduced compared to the traditional approach where fNs is determined from the pion-nucleon σ term by means of an SU(3) relation. We illustrate this point by considering Higgs-mediated lepton flavor violation in the standard model supplemented with higher-dimensional operators, the two-Higgs-doublet model with generic Yukawa couplings, and the minimal supersymmetric standard model. Furthermore, we compare bounds from present and future μ→e conversion and μ→eγ experiments.
Resumo:
We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3 symmetry is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3 violating (denoted as ) terms are added to the soft supersymmetry breaking terms and the superpotential. The user provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the approximations and conventions used.
Resumo:
The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (ɡ − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor. This new, model-independent approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (ɡ − 2)μ.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ πT) and non-relativistic regimes (M ≫ πT), and up to LO in an ultrarelativistic regime (M ≲ gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M ~g 1/2 T in which our interpolation is phenomenological and a more precise study would be welcome.
Resumo:
In this article we calculate the one-loop supersymmetric QCD (SQCD) corrections to the decay u˜1→cχ˜01 in the minimal supersymmetric standard model with generic flavor structure. This decay mode is phenomenologically important if the mass difference between the lightest squark u˜1 (which is assumed to be mainly stoplike) and the neutralino lightest supersymmetric particle χ˜01 is smaller than the top mass. In such a scenario u˜1→tχ˜01 is kinematically not allowed and searches for u˜1→Wbχ˜01 and u˜1→cχ˜01 are performed. A large decay rate for u˜1→cχ˜01 can weaken the LHC bounds from u˜1→Wbχ01 which are usually obtained under the assumption Br[u˜1→Wbχ01]=100%. We find the SQCD corrections enhance Γ[u˜1→cχ˜01] by approximately 10% if the flavor violation originates from bilinear terms. If flavor violation originates from trilinear terms, the effect can be ±50% or more, depending on the sign of At. We note that connecting a theory of supersymmetry breaking to LHC observables, the shift from the DR¯¯¯¯¯ to the on-shell mass is numerically very important for light stop decays.
Resumo:
A search has been performed, using the full 20.3 fb −1 data sample of 8 TeV proton-proton collisions collected in 2012 with the ATLAS detector at the LHC, for photons originating from a displaced vertex due to the decay of a neutral long-lived particle into a photon and an invisible particle. The analysis investigates the diphoton plus missing transverse momentum final state, and is therefore most sensitive to pair production of long-lived particles. The analysis technique exploits the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction, as well as the time of flight, of photons. No excess is observed over the Standard Model predictions for background. Exclusion limits are set within the context of gauge mediated supersymmetry breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying into a photon and gravitino with a lifetime in the range from 250 ps to about 100 ns.