99 resultados para Bee pollen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past treelines can rarely be recorded by pollen percentages alone, but pollen concentration, pollen influx, and plant macrofossils (including stomata of conifers) are more reliable indicators. In addition, ancient forest soils above today's treeline may trace the maximum upper expansion of the forest since the last glaciation. Charcoal in such soil profiles may be radiocarbon dated. Our example from the Central Swiss Alps at the Alpe d'Essertse consists of a plant-macrofossil diagram and pollen diagrams of the pond Gouille Rion at 2343 m a.s.l. and a sequence of soil profiles from 1780 m to 2600 m a.s.l. The area around the pond was forested with LariJc decidua and Pinus cembra between 9500 and 3600 BP. After 4700 BP the forest became more open and Juniperus nana and Alnus viridis expanded (together with Picea abies in the subalpine forest). Between 1700 and 900 BP the Juniperus nana and Alnus viridis scrubs declined while meadows and pastures took over, so that the pond Gouille Rion was definitively above timber­ line. The highest Holocene treeline was at 2400 to 2450 m a.s.l. (i.e. 50 to 100 m higher than the uppermost single specimen of Pinus cembra today) between 9000 and 4700 BP, but it is not yet dated in more detail. The highest charcoal of Pinus cembra at 2380 m a.s.l. has a radiocarbon date of 6010 ± 70 BP. Around 6900 BP a strong climatic deterioration caused an opening of timberline forest. First indicators of anthropogenic influence occurred at 4700 BP, when the forest limit started to move down. The lowering of timberline after 4700 BP was probably due to combined effects of human and climatic impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant quality is one of the main factors influencing the fitness of phytophagous insects. Plant quality can vary not only among genotypes of the same host plant species, but also relative to the insect sex or its life stage. In the present study, the performance of larvae and adults of the pollen beetle (Meligethes aeneus F., Coleoptera: Nitidulidae), a major insect pest of oilseed rape crops, is compared on six genotypes of oilseed rape (Brassica napus). All of the traits that are measured vary among genotypes, and comprise larval developmental duration, life span of unfed emerging adults and survival time of field-sampled adults fed with pollen from the different genotypes. No correlation is found between insect performance and quantity of food available, showing that the quality of the food (i.e. pollen) is the fitness determinant for this insect species. Additionally, the performance of larvae and adults is also not correlated despite use of the same plant genotypes, suggesting that the determinants of pollen quality differ at least partially between both life stages. It is hypothesized that this may be a result of extensive differences in diet breadth between the life stages: larvae are specialists of brassicaceous plants, whereas adults are generalists. Finally, it is suggested that the manipulation of plant quality to increase pollen beetle development time may comprise a valuable strategy for favouring biological control by natural enemies of this pest; for example, as a result of extending the vulnerability window of larvae to attack by parasitoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.