138 resultados para Airway, Obstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The relationship between airway structural changes and inflammation is unclear in early cystic fibrosis (CF) lung disease. A study was undertaken to determine changes in airway remodelling in children with CF compared with appropriate disease and healthy controls. METHODS: Bronchoalveolar lavage and endobronchial biopsy were performed in a cross-sectional study of 43 children with CF (aged 0.3-16.8 years), 7 children with primary ciliary dyskinesia (PCD), 26 with chronic respiratory symptoms (CRS) investigated for recurrent infection and/or cough and 7 control children with no lower airway symptoms. Inflammatory cells, cytokines, proteases and matrix constituents were measured in bronchoalveolar lavage fluid (BALF). Reticular basement membrane (RBM) thickness was measured on biopsy specimens using light microscopy. RESULTS: Increased concentrations of elastin, glycosaminoglycans and collagen were found in BALF from children with CF compared with the CRS group and controls, each correlating positively with age, neutrophil count and proteases (elastase activity and matrix metalloproteinase-9 (MMP-9) concentration). There were significant negative correlations between certain of these and pulmonary function (forced expiratory volume in 1 s) in the CF group (elastin: r = -0.45, p<0.05; MMP-9:TIMP-1 ratio: r = -0.47, p<0.05). Median RBM thickness was greater in the CF group than in the controls (5.9 microm vs 4.0 microm, p<0.01) and correlated positively with levels of transforming growth factor-beta(1) (TGF-beta(1); r = 0.53, p = 0.01), although not with other inflammatory markers or pulmonary function. CONCLUSIONS: This study provides evidence for two forms of airway remodelling in children with CF: (1) matrix breakdown, related to inflammation, proteolysis and impaired pulmonary function, and (2) RBM thickening, related to TGF-beta(1) concentration but independent of other markers of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To prospectively determine if changes in intrarenal oxygenation during acute unilateral ureteral obstruction can be depicted with blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained from all patients. BOLD MR imaging was performed in 10 male patients (mean age, 45 years +/- 17 [standard deviation]; range, 20-73 years) with a distal unilateral ureteral calculus and in 10 healthy age-matched male volunteers to estimate R2*, which is inversely related to tissue Po(2). R2* values were determined in the cortex and medulla of the obstructed and the contralateral nonobstructed kidneys. To reduce external effects on R2*, the R2* ratio between the medulla and cortex was also analyzed. Statistical analysis was performed with nonparametric rank tests. P < .05 was considered to indicate a significant difference. RESULTS: All patients had significantly lower medullary and cortical R2* values in the obstructed kidney (median R2* in medulla, 10.9 sec(-1) [range, 9.1-14.3 sec(-1)]; median R2* in cortex, 10.4 sec(-1) [range, 9.7-11.3 sec(-1)]) than in the nonobstructed kidney (median R2* in medulla, 17.2 sec(-1) [range, 14.6-23.2 sec(-1)], P = .005; median R2* in cortex, 11.7 sec(-1) [range, 11.0-14.0 sec(-1)], P = .005); values in the obstructed kidneys were also significantly lower than values in the kidneys of healthy control subjects (median R2* in medulla, 16.1 sec(-1) [range, 13.9-18.1 sec(-1)], P < .001; median R2* in cortex, 11.6 sec(-1) [range, 10.5-12.9 sec(-1)], P < .001). R2* ratios in the obstructed kidneys (median, 1.06; range, 0.85-1.27) were significantly lower than those in the nonobstructed kidneys (median, 1.49; range, 1.26-1.71; P = .005) and those in the kidneys of healthy control subjects (median, 1.38; range, 1.23-1.47; P < .001). In contrast, R2* ratios in the nonobstructed kidneys of patients were significantly higher than those in kidneys of healthy control subjects (P = .01). CONCLUSION: Increased oxygen content in the renal cortex and medulla occurs with acute unilateral ureteral obstruction, suggesting reduced function of the affected kidney.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The interrupter technique is increasingly used in preschool children to assess airway resistance (Rint). Use of a bacterial filter is essential for prevention of cross-infection in a clinical setting. It is not known how large an effect this extra resistance and compliance exert upon interrupter measurements, especially on obstructive airways and in smaller children. We aim to determine the contribution of the filter to Rint, in a sample of children attending lung function testing at an asthma clinic. METHODS: Interrupter measurements were performed according to ATS/ERS guidelines during quiet normal breathing at an expiratory flow trigger of 200 ml s(-1), with the child seated upright with cheeks supported and wearing a nose clip. A minimum of 10 interrupter measurements was made with and without a bacterial filter. Spirometric and plethysmographic tests were also performed. RESULTS: A small but significant difference (0.12 (95% CI 0.06-0.17) kPa s L(-1), P = 0.0002) with 2x SD of 0.34 kPa s L(-1) was observed between Rint with and without filter in 39 children, with a large spread. This difference was not dependent on Rint magnitude, age or height, nor on lung function parameters (effective resistance, forced expiratory volume in 1 sec, and maximal expiratory flow at 50% of expired vital capacity). CONCLUSIONS: A bacterial filter causes a small difference but is not clinically significant, with a wide spread comparable to the variability of the technique and recommended cut-offs for assessing repeatability and bronchodilation. Age, height or severity of obstruction need not be corrected for in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. METHODS: We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. RESULTS: SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. CONCLUSION: Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Structural alterations to airway smooth muscle (ASM) are a feature of asthma and cystic fibrosis (CF) in adults. OBJECTIVES: We investigated whether increase in ASM mass is already present in children with chronic inflammatory lung disease. METHODS: Fiberoptic bronchoscopy was performed in 78 children (median age [IQR], 11.3 [8.5-13.8] yr): 24 with asthma, 27 with CF, 16 with non-CF bronchiectasis (BX), and 11 control children without lower respiratory tract disease. Endobronchial biopsy ASM content and myocyte number and size were quantified using stereology. MEASUREMENTS AND MAIN RESULTS: The median (IQR) volume fraction of subepithelial tissue occupied by ASM was increased in the children with asthma (0.27 [0.12-0.49]; P < 0.0001), CF (0.12 [0.06-0.21]; P < 0.01), and BX (0.16 [0.04-0.21]; P < 0.01) compared with control subjects (0.04 [0.02-0.05]). ASM content was related to bronchodilator responsiveness in the asthmatic group (r = 0.66, P < 0.01). Median (IQR) myocyte number (cells per mm(2) of reticular basement membrane) was 8,204 (5,270-11,749; P < 0.05) in children with asthma, 4,504 (2,838-8,962; not significant) in children with CF, 4,971 (3,476-10,057; not significant) in children with BX, and 1,944 (1,596-6,318) in control subjects. Mean (SD) myocyte size (mum(3)) was 3,344 (801; P < 0.01) in children with asthma, 3,264 (809; P < 0.01) in children with CF, 3,177 (873; P < 0.05) in children with BX, and 1,927 (386) in control subjects. In all disease groups, the volume fraction of ASM in subepithelial tissue was related to myocyte number (asthma: r = 0.84, P < 0.001; CF: r = 0.81, P < 0.01; BX: r = 0.95, P < 0.001), but not to myocyte size. CONCLUSIONS: Increases in ASM (both number and size) occur in children with chronic inflammatory lung diseases that include CF, asthma, and BX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (alphaSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5'-nucleotidase (5'NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The single-use supraglottic airway devices LMA-Supreme (LMA-S; Laryngeal Mask Company, Henley-on-Thames, United Kingdom) and i-gel (Intersurgical Ltd, Wokingham, Berkshire, United Kingdom) have a second tube for gastric tube insertion. Only the LMA-S has an inflatable cuff. They have the same clinical indications and might be useful for difficult airway management. This prospective, crossover, randomized controlled trial was performed in a simulated difficult airway scenario using an extrication collar limiting mouth opening and neck movement. METHODS: Sixty patients were included. Both devices were placed in random order in each patient. Primary outcome was overall success rate. Other measurements were time to successful ventilation, airway leak pressure, fiberoptic glottic view, and adverse events. RESULTS: Success rate for the LMA-S was 95% versus 93% for the i-gel (P = 1.000). LMA-S needed shorter insertion time (34 +/- 12 s vs. 42 +/- 23 s, P = 0.024). Tidal volumes and airway leak pressure were similar (LMA-S 26 +/- 8 cm H20; i-gel 27 +/- 9 cm H20; P = 0.441). Fiberoptic view through the i-gel showed less epiglottic downfolding. Overall agreement in insertion outcome was 54 (successes) and 1 (failure) or 55 (92%) of 60 patients. The difference in success rate was 1.7% (95% CI -11.3% to 7.6%). CONCLUSIONS: Both airway devices had similar insertion success and clinical performance in the simulated difficult airway situation. The authors found less epiglottic downfolding and better fiberoptic view but longer insertion time with the i-gel. Our study shows that both devices are feasible for emergency airway management in patients with reduced neck movement and limited mouth opening.