260 resultados para Acute Ischemic-stroke
Resumo:
The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by circular singular value decomposition deconvolution maps (Tmax > 6 s) and results were compared with volumes obtained with non-deconvolved maps (time to peak > 4 s). Loss of penumbral volume was defined as difference of post- minus pretreatment diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between baseline characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collaterals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfusion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with 3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was -2% with -1.5 ml/h, indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatment.
Resumo:
BACKGROUND Elevated resting heart rate is known to be detrimental to morbidity and mortality in cardiovascular disease, though its effect in patients with ischemic stroke is unclear. We analyzed the effect of baseline resting heart rate on myocardial infarction (MI) in patients with a recent noncardioembolic cerebral ischemic event participating in PERFORM. METHODS We compared fatal or nonfatal MI using adjusted Cox proportional hazards models for PERFORM patients with baseline heart rate <70 bpm (n=8178) or ≥70 bpm (n=10,802). In addition, heart rate was analyzed as a continuous variable. Other cerebrovascular and cardiovascular outcomes were also explored. RESULTS Heart rate ≥70 bpm was associated with increased relative risk for fatal or nonfatal MI (HR 1.32, 95% CI 1.03-1.69, P=0.029). For every 5-bpm increase in heart rate, there was an increase in relative risk for fatal and nonfatal MI (11.3%, P=0.0002). Heart rate ≥70 bpm was also associated with increased relative risk for a composite of fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (excluding hemorrhagic death) (P<0001); vascular death (P<0001); all-cause mortality (P<0001); and fatal or nonfatal stroke (P=0.04). For every 5-bpm increase in heart rate, there were increases in relative risk for fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (4.7%, P<0.0001), vascular death (11.0%, P<0.0001), all-cause mortality (8.0%, P<0.0001), and fatal and nonfatal stroke (2.4%, P=0.057). CONCLUSION Elevated heart rate ≥70 bpm places patients with a noncardioembolic cerebral ischemic event at increased risk for MI.
Resumo:
BACKGROUND AND PURPOSE Intravenous thrombolysis for acute ischemic stroke is beneficial within 4.5 hours of symptom onset, but the effect rapidly decreases over time, necessitating quick diagnostic in-hospital work-up. Initial time strain occasionally results in treatment of patients with an alternate diagnosis (stroke mimics). We investigated whether intravenous thrombolysis is safe in these patients. METHODS In this multicenter observational cohort study containing 5581 consecutive patients treated with intravenous thrombolysis, we determined the frequency and the clinical characteristics of stroke mimics. For safety, we compared the symptomatic intracranial hemorrhage (European Cooperative Acute Stroke Study II [ECASS-II] definition) rate of stroke mimics with ischemic strokes. RESULTS One hundred stroke mimics were identified, resulting in a frequency of 1.8% (95% confidence interval, 1.5-2.2). Patients with a stroke mimic were younger, more often female, and had fewer risk factors except smoking and previous stroke or transient ischemic attack. The symptomatic intracranial hemorrhage rate in stroke mimics was 1.0% (95% confidence interval, 0.0-5.0) compared with 7.9% (95% confidence interval, 7.2-8.7) in ischemic strokes. CONCLUSIONS In experienced stroke centers, among patients treated with intravenous thrombolysis, only a few had a final diagnosis other than stroke. The complication rate in these stroke mimics was low.
Resumo:
BACKGROUND It is often assumed that blood pressure increases acutely after major stroke, resulting in so-called post-stroke hypertension. In view of evidence that the risks and benefits of blood pressure-lowering treatment in acute stroke might differ between patients with major ischaemic stroke and those with primary intracerebral haemorrhage, we compared acute-phase and premorbid blood pressure levels in these two disorders. METHODS In a population-based study in Oxfordshire, UK, we recruited all patients presenting with stroke between April 1, 2002, and March 31, 2012. We compared all acute-phase post-event blood pressure readings with premorbid readings from 10-year primary care records in all patients with acute major ischaemic stroke (National Institutes of Health Stroke Scale >3) versus those with acute intracerebral haemorrhage. FINDINGS Of 653 consecutive eligible patients, premorbid and acute-phase blood pressure readings were available for 636 (97%) individuals. Premorbid blood pressure (total readings 13,244) had been measured on a median of 17 separate occasions per patient (IQR 8-31). In patients with ischaemic stroke, the first acute-phase systolic blood pressure was much lower than after intracerebral haemorrhage (158·5 mm Hg [SD 30·1] vs 189·8 mm Hg [38·5], p<0·0001; for patients not on antihypertensive treatment 159·2 mm Hg [27·8] vs 193·4 mm Hg [37·4], p<0·0001), was little higher than premorbid levels (increase of 10·6 mm Hg vs 10-year mean premorbid level), and decreased only slightly during the first 24 h (mean decrease from <90 min to 24 h 13·6 mm Hg). By contrast with findings in ischaemic stroke, the mean first systolic blood pressure after intracerebral haemorrhage was substantially higher than premorbid levels (mean increase of 40·7 mm Hg, p<0·0001) and fell substantially in the first 24 h (mean decrease of 41·1 mm Hg; p=0·0007 for difference from decrease in ischaemic stroke). Mean systolic blood pressure also increased steeply in the days and weeks before intracerebral haemorrhage (regression p<0·0001) but not before ischaemic stroke. Consequently, the first acute-phase blood pressure reading after primary intracerebral haemorrhage was more likely than after ischaemic stroke to be the highest ever recorded (OR 3·4, 95% CI 2·3-5·2, p<0·0001). In patients with intracerebral haemorrhage seen within 90 min, the highest systolic blood pressure within 3 h of onset was 50 mm Hg higher, on average, than the maximum premorbid level whereas that after ischaemic stroke was 5·2 mm Hg lower (p<0·0001). INTERPRETATION Our findings suggest that systolic blood pressure is substantially raised compared with usual premorbid levels after intracerebral haemorrhage, whereas acute-phase systolic blood pressure after major ischaemic stroke is much closer to the accustomed long-term premorbid level, providing a potential explanation for why the risks and benefits of lowering blood pressure acutely after stroke might be expected to differ. FUNDING Wellcome Trust, Wolfson Foundation, UK Medical Research Council, Stroke Association, British Heart Foundation, National Institute for Health Research.
Resumo:
BACKGROUND Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. OBJECTIVE To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. METHODS Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. RESULTS Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. CONCLUSIONS Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.
Resumo:
BACKGROUND AND PURPOSE Eligibility criteria are a key factor for the feasibility and validity of clinical trials. We aimed to develop an online tool to assess the potential effect of inclusion and exclusion criteria on the proportion of patients eligible for an acute stroke trial. METHODS We identified relevant inclusion and exclusion criteria of acute stroke trials. Based on these criteria and using a cohort of 1537 consecutive patients with acute ischemic stroke from 3 stroke centers, we developed a web portal feasibility platform for stroke studies (FePASS) to estimate proportions of eligible patients for acute stroke trials. We applied the FePASS resource to calculate the proportion of patients eligible for 4 recent stroke studies. RESULTS Sixty-one eligibility criteria were derived from 30 trials on acute ischemic stroke. FePASS, publicly available at http://fepass.uni-muenster.de, displays the proportion of patients in percent to assess the effect of varying values of relevant eligibility criteria, for example, age, symptom onset time, National Institutes of Health Stroke Scale, and prestroke modified Rankin Scale, on this proportion. The proportion of eligible patients for 4 recent stroke studies ranged from 2.1% to 11.3%. Slight variations of the inclusion criteria could substantially increase the proportion of eligible patients. CONCLUSIONS FePASS is an open access online resource to assess the effect of inclusion and exclusion criteria on the proportion of eligible patients for a stroke trial. FePASS can help to design stroke studies, optimize eligibility criteria, and to estimate the potential recruitment rate.
Resumo:
BACKGROUND AND PURPOSE The prevalence and clinical importance of primarily fragmented thrombi in patients with acute ischemic stroke remains elusive. Whole-brain SWI was used to detect multiple thrombus fragments, and their clinical significance was analyzed. MATERIALS AND METHODS Pretreatment SWI was analyzed for the presence of a single intracranial thrombus or multiple intracranial thrombi. Associations with baseline clinical characteristics, complications, and clinical outcome were studied. RESULTS Single intracranial thrombi were detected in 300 (92.6%), and multiple thrombi, in 24 of 324 patients (7.4%). In 23 patients with multiple thrombi, all thrombus fragments were located in the vascular territory distal to the primary occluding thrombus; in 1 patient, thrombi were found both in the anterior and posterior circulation. Only a minority of thrombus fragments were detected on TOF-MRA, first-pass gadolinium-enhanced MRA, or DSA. Patients with multiple intracranial thrombi presented with more severe symptoms (median NIHSS scores, 15 versus 11; P = .014) and larger ischemic areas (median DWI ASPECTS, 5 versus 7; P = .006); good collaterals, rated on DSA, were fewer than those in patients with a single thrombus (21.1% versus 44.2%, P = .051). The presence of multiple thrombi was a predictor of unfavorable outcome at 3 months (P = .040; OR, 0.251; 95% CI, 0.067-0.939). CONCLUSIONS Patients with multiple intracranial thrombus fragments constitute a small subgroup of patients with stroke with a worse outcome than patients with single thrombi.
Resumo:
OBJECTIVE To compare long-term outcome of children and young adults with arterial ischemic stroke (AIS) from 2 large registries. METHODS Prospective cohort study comparing functional and psychosocial long-term outcome (≥2 years after AIS) in patients who had AIS during childhood (1 month-16 years) or young adulthood (16.1-45 years) between January 2000 and December 2008, who consented to follow-up. Data of children were collected prospectively in the Swiss Neuropediatric Stroke Registry, young adults in the Bernese stroke database. RESULTS Follow-up information was available in 95/116 children and 154/187 young adults. Median follow-up of survivors was 6.9 years (interquartile range 4.7-9.4) and did not differ between the groups (p = 0.122). Long-term functional outcome was similar (p = 0.896): 53 (56%) children and 84 (55%) young adults had a favorable outcome (modified Rankin Scale 0-1). Mortality in children was 14% (13/95) and in young adults 7% (11/154) (p = 0.121) and recurrence rate did not differ (p = 0.759). Overall psychosocial impairment and quality of life did not differ, except for more behavioral problems among children (13% vs 5%, p = 0.040) and more frequent reports of an impact of AIS on everyday life among adults (27% vs 64%, p < 0.001). In a multivariate regression analysis, low Pediatric NIH Stroke Scale/NIH Stroke Scale score was the most important predictor of favorable outcome (p < 0.001). CONCLUSION There were no major differences in long-term outcome after AIS in children and young adults for mortality, disability, quality of life, psychological, or social variables.
Resumo:
Background Among patients with acute ischemic stroke due to occlusions in the proximal anterior intracranial circulation, less than 40% regain functional independence when treated with intravenous tissue plasminogen activator (t-PA) alone. Thrombectomy with the use of a stent retriever, in addition to intravenous t-PA, increases reperfusion rates and may improve long-term functional outcome. Methods We randomly assigned eligible patients with stroke who were receiving or had received intravenous t-PA to continue with t-PA alone (control group) or to undergo endovascular thrombectomy with the use of a stent retriever within 6 hours after symptom onset (intervention group). Patients had confirmed occlusions in the proximal anterior intracranial circulation and an absence of large ischemic-core lesions. The primary outcome was the severity of global disability at 90 days, as assessed by means of the modified Rankin scale (with scores ranging from 0 [no symptoms] to 6 [death]). Results The study was stopped early because of efficacy. At 39 centers, 196 patients underwent randomization (98 patients in each group). In the intervention group, the median time from qualifying imaging to groin puncture was 57 minutes, and the rate of substantial reperfusion at the end of the procedure was 88%. Thrombectomy with the stent retriever plus intravenous t-PA reduced disability at 90 days over the entire range of scores on the modified Rankin scale (P<0.001). The rate of functional independence (modified Rankin scale score, 0 to 2) was higher in the intervention group than in the control group (60% vs. 35%, P<0.001). There were no significant between-group differences in 90-day mortality (9% vs. 12%, P=0.50) or symptomatic intracranial hemorrhage (0% vs. 3%, P=0.12). Conclusions In patients receiving intravenous t-PA for acute ischemic stroke due to occlusions in the proximal anterior intracranial circulation, thrombectomy with a stent retriever within 6 hours after onset improved functional outcomes at 90 days.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.
Resumo:
BACKGROUND AND OBJECTIVES Neonatal arterial ischemic stroke (NAIS) is associated with considerable lifetime burdens such as cerebral palsy, epilepsy, and cognitive impairment. Prospective epidemiologic studies that include outcome assessments are scarce. This study aimed to provide information on the epidemiology, clinical manifestations, infarct characteristics, associated clinical variables, treatment strategies, and outcomes of NAIS in a prospective, population-based cohort of Swiss children. METHODS This prospective study evaluated the epidemiology, clinical manifestations, vascular territories, associated clinical variables, and treatment of all full-term neonates diagnosed with NAIS and born in Switzerland between 2000 and 2010. Follow-up was performed 2 years (mean 23.3 months, SD 4.3 months) after birth. RESULTS One hundred neonates (67 boys) had a diagnosis of NAIS. The NAIS incidence in Switzerland during this time was 13 (95% confidence interval [CI], 11-17) per 100,000 live births. Seizures were the most common symptom (95%). Eighty-one percent had unilateral (80% left-sided) and 19% had bilateral lesions. Risk factors included maternal risk conditions (32%), birth complications (68%), and neonatal comorbidities (54%). Antithrombotic and antiplatelet therapy use was low (17%). No serious side effects were reported. Two years after birth, 39% were diagnosed with cerebral palsy and 31% had delayed mental performance. CONCLUSIONS NAIS in Switzerland shows a similar incidence as other population-based studies. About one-third of patients developed cerebral palsy or showed delayed mental performance 2 years after birth, and children with normal mental performance may still develop deficits later in life.
Resumo:
BACKGROUND AND PURPOSE Five randomized controlled trials have consistently shown that mechanical thrombectomy (MT) in addition to best medical treatment (±intravenous tissue-type plasminogen activator) improves outcome after acute ischemic stroke in patients with large artery anterior circulation stroke. Whether direct MT is equally effective as combined intravenous thrombolysis with MT (ie, bridging thrombolysis) remains unclear. METHODS We retrospectively compared clinical and radiological outcomes in 167 bridging patients with 255 patients receiving direct MT because of large artery anterior circulation stroke. We matched all patients from the direct MT group who would have qualified for intravenous tissue-type plasminogen activator with controls from the bridging group, using multivariate and propensity score analyses. Functional independence was defined as modified Rankin Scale score of 0 to 2. RESULTS From February 2009 to August 2014, 40 patients from the direct MT group would have qualified for bridging thrombolysis but were treated with MT only. Clinical and radiological characteristics did not differ from the bridging cohort, except for higher rates of hypercholesterolemia (P=0.019), coronary heart disease (P=0.039), and shorter intervals from symptom onset to endovascular intervention (P=0.01) in the direct MT group. Functional independence, mortality, and intracerebral hemorrhage rates did not differ (P>0.1). After multivariate matching analysis outcome in both groups did not differ, except for lower rates of asymptomatic intracerebral hemorrhage (P=0.023) and lower mortality (P=0.007) in the direct MT group. CONCLUSIONS In patients with large anterior circulation stroke, direct mechanical intervention seems to be equally effective as bridging thrombolysis. A randomized trial comparing direct MT with bridging therapy is warranted.
Resumo:
Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. SIGNIFICANCE STATEMENT The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. We assessed whether microglial cells preserve neurovascular integrity after neonatal stroke. In neonatal rats, microglial depletion or pharmacological inhibition of TGFbr2/ALK5 signaling in microglia triggered hemorrhages in injured regions. The effect was not associated with additional changes in expression or intracellular redistribution of several tight junction proteins or collagen IV degradation induced by stroke. Consistent with observations in neonatal rats, microglial depletion in neonatal mice exacerbated stroke injury and induced hemorrhages. The effects were independent of infiltration of monocytes into injured regions. Thus, microglia protect neonatal brain from ischemia-induced hemorrhages, and this effect is consistent across two species.