137 resultados para ATP release
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
OBJECTIVE To search the literature and assess the short- and long-term release of bisphenol-A (BPA) in human tissues after treatment with dental sealants. DATA Two review authors performed data extraction independently and in duplicate using data collection forms. Disagreements were resolved by discussion with an arbiter. SOURCES Electronic database searches of published and unpublished literature were performed. The following electronic databases with no language and publication date restrictions were searched: MEDLINE (via Ovid and Pubmed), EMBASE (via ovid), Cochrane Trials Register and CENTRAL. The reference lists of all eligible studies were hand-searched. STUDY SELECTION In the absence of RCTs, six interventional and two observational studies, examining in vivo BPA release in human salivary, blood and urinary samples, were included. Due to the heterogeneity in methodology and reporting, the main synthesis of the results was qualitative. The quantitative synthesis based on the weighted Z-test could only include two studies. BPA levels identified in saliva ranged from traces below the method's detection limit to 30 μg/ml. In urine, BPA quantities spanned from 0.17 mg/g to 45.4 mg/g. BPA was not traced in any blood sample at any point of time in the relevant studies. The quantitative analysis showed evidence of BPA release one hour after sealant placement compared to the amount traced before restoration (Stouffer's z trend: <0.001). CONCLUSIONS The available evidence on this topic derived from studies that represent a moderate level of evidence. Nevertheless, the available evidence supports that BPA is released in saliva after sealant placement. CLINICAL SIGNIFICANCE From the qualititative and quantitative synthesis of studies, it is reasonable to conclude that BPA is released after placement of some dental pit and fissure sealants in the oral cavity. The biggest quantities are detected in saliva immediately after or one hour after their placement.
Resumo:
BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) may stem from cardiac channelopathies. The KCNJ8-encoded Kir6.1 (K(ATP)) channel critically regulates vascular tone and cardiac adaptive response to systemic metabolic stressors, including sepsis. KCNJ8-deficient mice are prone to premature sudden death, particularly with infection. We determined the spectrum, prevalence, and function of KCNJ8 mutations in a large SIDS cohort. METHODS AND RESULTS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive open reading frame/splice-site mutational analysis of KCNJ8 was performed on genomic DNA isolated from necropsy tissue on 292 unrelated SIDS cases (178 males, 204 white; age, 2.9±1.9 months). KCNJ8 mutations were coexpressed heterologously with SUR2A in COS-1 cells and characterized using whole-cell patch-clamp. Two novel KCNJ8 mutations were identified. A 5-month-old white male had an in-frame deletion (E332del) and a 2-month-old black female had a missense mutation (V346I). Both mutations localized to Kir6.1's C-terminus, involved conserved residues and were absent in 400 and 200 ethnic-matched reference alleles respectively. Both cases were negative for mutations in established channelopathic genes. Compared with WT, the pinacidil-activated K(ATP) current was decreased 45% to 68% for Kir6.1-E332del and 40% to 57% for V346I between -20 mV and 40 mV. CONCLUSIONS Molecular and functional evidence implicated loss-of-function KCNJ8 mutations as a novel pathogenic mechanism in SIDS, possibly by predisposition of a maladaptive cardiac response to systemic metabolic stressors akin to the mouse models of KCNJ8 deficiency.
Resumo:
BACKGROUND J-wave syndromes have emerged conceptually to encompass the pleiotropic expression of J-point abnormalities including Brugada syndrome (BrS) and early repolarization syndrome (ERS). KCNJ8, which encodes the cardiac K(ATP) Kir6.1 channel, recently has been implicated in ERS following identification of the functionally uncharacterized missense mutation S422L. OBJECTIVE The purpose of this study was to further explore KCNJ8 as a novel susceptibility gene for J-wave syndromes. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open reading frame/splice site mutational analysis of KCNJ8 was performed in 101 unrelated patients with J-wave syndromes, including 87 with BrS and 14 with ERS. Six hundred healthy individuals were examined to assess the allelic frequency for all variants detected. KCNJ8 mutation(s) was engineered by site-directed mutagenesis and coexpressed heterologously with SUR2A in COS-1 cells. Ion currents were recorded using whole-cell configuration of the patch-clamp technique. RESULTS One BrS case and one ERS case hosted the identical missense mutation S422L, which was reported previously. KCNJ8-S422L involves a highly conserved residue and was absent in 1,200 reference alleles. Both cases were negative for mutations in all known BrS and ERS susceptibility genes. K(ATP) current of the Kir6.1-S422L mutation was increased significantly over the voltage range from 0 to 40 mV compared to Kir6.1-WT channels (n = 16-21; P <.05). CONCLUSION These findings further implicate KCNJ8 as a novel J-wave syndrome susceptibility gene and a marked gain of function in the cardiac K(ATP) Kir6.1 channel secondary to KCNJ8-S422L as a novel pathogenic mechanism for the phenotypic expression of both BrS and ERS.
Resumo:
OBJECTIVES This study was undertaken to determine the spectrum and prevalence of mutations in the RYR2-encoded cardiac ryanodine receptor in cases with exertional syncope and normal corrected QT interval (QTc). BACKGROUND Mutations in RYR2 cause type 1 catecholaminergic polymorphic ventricular tachycardia (CPVT1), a cardiac channelopathy with increased propensity for lethal ventricular dysrhythmias. Most RYR2 mutational analyses target 3 canonical domains encoded by <40% of the translated exons. The extent of CPVT1-associated mutations localizing outside of these domains remains unknown as RYR2 has not been examined comprehensively in most patient cohorts. METHODS Mutational analysis of all RYR2 exons was performed using polymerase chain reaction, high-performance liquid chromatography, and deoxyribonucleic acid sequencing on 155 unrelated patients (49% females, 96% Caucasian, age at diagnosis 20 +/- 15 years, mean QTc 428 +/- 29 ms), with either clinical diagnosis of CPVT (n = 110) or an initial diagnosis of exercise-induced long QT syndrome but with QTc <480 ms and a subsequent negative long QT syndrome genetic test (n = 45). RESULTS Sixty-three (34 novel) possible CPVT1-associated mutations, absent in 400 reference alleles, were detected in 73 unrelated patients (47%). Thirteen new mutation-containing exons were identified. Two-thirds of the CPVT1-positive patients had mutations that localized to 1 of 16 exons. CONCLUSIONS Possible CPVT1 mutations in RYR2 were identified in nearly one-half of this cohort; 45 of the 105 translated exons are now known to host possible mutations. Considering that approximately 65% of CPVT1-positive cases would be discovered by selective analysis of 16 exons, a tiered targeting strategy for CPVT genetic testing should be considered.
Resumo:
Phosphate release kinetics in soils are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Dissolution of phosphate-containing minerals induced by a changing rhizosphere equilibrium through proton input is one important mechanism that releases phosphate into bioavailable forms. Our objectives were (i) to determine phosphate release kinetics during H+ addition in calcareous soils of the Schwäbische Alb, Germany, and to assess the influence of (ii) land-use type (grassland vs. forest) and (iii) management intensity on reactive phosphate pools and phosphate release rate constants during H+ addition. Phosphate release kinetics were characterized by a large fast-reacting phosphatepool, which could be attributed to poorly-crystalline calcium phosphates, and a small slow-reacting phosphate pool probably originating from carbonate-bearing hydroxylapatite. Both reactive phosphate pools—as well as total phosphate concentrations (TP) in soil—were greater in grassland than in forest soils. In organically fertilized grassland soils, concentrations of released phosphate were higher than in unfertilized soils, likely because organic fertilizers contain poorly-crystalline phosphate compounds which are further converted into sparingly soluble phosphate forms. Because of an enriched slow-reacting phosphate pool, mown pastures were characterized by a more continuous slow phosphate release reaction in contrast to clear biphasic phosphate release patterns in meadows. Consequently, managing phosphate release kinetics via management measures is a valuable tool to evaluate longer-term P availability in soil in the context of finite rock phosphate reserves on earth.
Resumo:
Because proliferative vitreoretinopathy cannot be effectively treated, its prevention is indispensable for the success of surgery for retinal detachment. The elaboration of preventive and therapeutic strategies depends upon the identification of patients who are genetically predisposed to develop the disease, as well as upon an understanding of the biological process involved and the role of local factors, such as the status of the uveovascular barrier. Detachment of the retina or vitreous activates glia to release cytokines and ATP, which not only protect the neuroretina but also promote inflammation, retinal ischemia, cell proliferation, and tissue remodeling. The vitreal microenvironment favors cellular de-differentiation and proliferation of cells with nonspecific nutritional requirements. This may render a pharmacological inhibition of their growth difficult without causing damage to the pharmacologically vulnerable neuroretina. Moreover, reattachment of the retina relies upon the local induction of a controlled wound-healing response involving macrophages and proliferating glia. Hence, the functional outcome of proliferative vitreoretinopathy will be determined by the equilibrium established between protective and destructive repair mechanisms, which will be influenced by the location and the degree of damage to the photoreceptor cells that is induced by peri-retinal gliosis.
Resumo:
Exoerythrocytic Plasmodium parasites infect hepatocytes and develop to huge multinucleated schizonts inside a parasitophorous vacuole. Finally, thousands of merozoites are formed and released into the host cell cytoplasm by complete disintegration of the parasitophorous vacuole membrane. This, in turn, results in death and detachment of the infected hepatocyte, followed by the formation of merosomes. The fast growth of the parasite and host cell detachment are hallmarks of liver stage development and can easily be monitored. Here, we describe how to translate these observations into assays for characterizing parasite development. Additionally, other recently introduced techniques and tools to analyze and manipulate liver stage parasites are also discussed.
Resumo:
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").
Resumo:
Augmented inositol 1,4,5-trisphosphate receptor (InsP3R) function has been linked to a variety of cardiac pathologies, including cardiac arrhythmia. The contribution of inositol 1,4,5-trisphosphate-induced Ca2+ release (IP3ICR) in excitation-contraction coupling (ECC) under physiological conditions, as well as under cellular remodelling, remains controversial. Here we test the hypothesis that local IP3ICR directly affects ryanodine receptor (RyR) function and subsequent Ca2+-induced Ca2+ release in atrial myocytes. IP3ICR was evoked by UV-flash photolysis of caged InsP3 under whole-cell configuration of the voltage-clamp technique in atrial myocytes isolated from C57/BL6 mice. Photolytic release of InsP3 was accompanied by a significant increase in the Ca2+ release event frequency (4.14±0.72 vs. 6.20±0.76 events (100 μm)−1 s−1). These individual photolytically triggered Ca2+ release events were identified as Ca2+ sparks, which originated from RyR openings. This was verified by Ca2+ spark analysis and pharmacological separation between RyR and InsP3R-dependent sarcoplasmic reticulum (SR)-Ca2+ release (2-aminoethoxydiphenyl borate, xestospongin C, tetracaine). Significant SR-Ca2+ flux but eventless SR-Ca2+ release through InsP3R were characterized using SR-Ca2+ leak/SR-Ca2+ load measurements. These results strongly support the idea that IP3ICR can effectively modulate RyR openings and Ca2+ spark probability. We conclude that eventless and highly efficient InsP3-dependent SR-Ca2+ flux is the main mechanism of functional cross-talk between InsP3Rs and RyRs, which may be an important factor in the modulation of ECC sensitivity.
Resumo:
The thermal release rate of nuclear reaction products was investigated in offline annealing experiments. This work was motivated by the search for a high melting catcher material for recoiling products from heavy ion induced nuclear fusion reactions. Polycrystalline refractory metal foils of Ni, Y, Zr, Nb, Mo, Hf, W, and Re were investigated as catcher metals. Diffusion data for various tracer/host combinations were deduced from the measured release rates. This work focuses on the diffusion and the release rate of volatile p-elements from row 5 and 6 of the periodic table as lighter homologues of the superheavy elements with Z ≥ 113 to be studied in future experiments. A massive radiation damage enhancement of the diffusion velocity was observed. Diffusion trends have been established along the groups and rows of the periodic table based on the dependence of diffusion velocity on atomic sizes.
Resumo:
Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.
Resumo:
OBJECTIVE Although extended-release (XR) formulations are recognized to bear some risk of pharmacobezoar formation in overdose, there are no previously documented reports of this phenomenon with quetiapine. We describe nine cases of pharmacobezoar formation in acute quetiapine XR overdose. METHODS Observational case series of all patients who underwent gastroscopy after quetiapine XR overdose, which were reported by physicians to the Swiss Toxicological Information Centre between January 2010 and December 2012, with detailed analysis of cases with documented pharmacobezoar. RESULTS Gastric pharmacobezoars were detected in 9 out of 19 gastroscopic evaluations performed during the study period. All these patients ingested a large dose of quetiapine XR (10-61 tablets; 6-24.4 g quetiapine). All patients but one also coingested at least one other substance, and in three cases another XR drug formulation. Gastroscopic pharmacobezoar removal was achieved without complications in all patients, but was difficult due to the particular "gelatinous-sticky-pasty" consistency of the concretion. The subsequent clinical course was favorable. CONCLUSIONS The possibility of pharmacobezoar formation following a large quetiapine XR overdose should be considered, as this may influence acute patient management. Complete endoscopic pharmacobezoar removal may be a promising approach in selected cases, but further studies are needed to define its role.
Resumo:
Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≥3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning.