94 resultados para 4-dihydrocarbazole-9-ethyl-benzenesulfonate
Resumo:
PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.
Resumo:
Faldaprevir, a hepatitis C virus (HCV) NS3/4A protease inhibitor, was evaluated in HCV genotype 1-infected patients who failed peginterferon and ribavirin (PegIFN/RBV) treatment during one of three prior faldaprevir trials. Patients who received placebo plus PegIFN/RBV and had virological failure during a prior trial were enrolled and treated in two cohorts: prior relapsers (n = 43) and prior nonresponders (null responders, partial responders and patients with breakthrough; n = 75). Both cohorts received faldaprevir 240 mg once daily plus PegIFN/RBV for 24 weeks. Prior relapsers with early treatment success (ETS; HCV RNA <25 IU/mL detectable or undetectable at week 4 and <25 IU/mL undetectable at week 8) stopped treatment at week 24. Others received PegIFN/RBV through week 48. The primary efficacy endpoint was sustained virological response (HCV RNA <25 IU/mL undetectable) 12 weeks post treatment (SVR12). More prior nonresponders than prior relapsers had baseline HCV RNA ≥800 000 IU/mL (80% vs 58%) and a non-CC IL28B genotype (91% vs 70%). Rates of SVR12 (95% CI) were 95.3% (89.1, 100.0) among prior relapsers and 54.7% (43.4, 65.9) among prior nonresponders; corresponding ETS rates were 97.7% and 65.3%. Adverse events led to faldaprevir discontinuations in 3% of patients. The most common Division of AIDS Grade ≥2 adverse events were anaemia (13%), nausea (10%) and hyperbilirubinaemia (9%). In conclusion, faldaprevir plus PegIFN/RBV achieved clinically meaningful SVR12 rates in patients who failed PegIFN/RBV in a prior trial, with response rates higher among prior relapsers than among prior nonresponders. The adverse event profile was consistent with the known safety profile of faldaprevir.
Resumo:
Late presentation (LP) for HIV care across Europe remains a significant issue. We provide a cross-European update from 34 countries on the prevalence and risk factors of LP for 2010-2013. People aged ≥ 16 presenting for HIV care (earliest of HIV-diagnosis, first clinic visit or cohort enrollment) after 1 January 2010 with available CD4 count within six months of presentation were included. LP was defined as presentation with a CD4 count < 350/mm(3) or an AIDS defining event (at any CD4), in the six months following HIV diagnosis. Logistic regression investigated changes in LP over time. A total of 30,454 people were included. The median CD4 count at presentation was 368/mm(3) (interquartile range (IQR) 193-555/mm(3)), with no change over time (p = 0.70). In 2010, 4,775/10,766 (47.5%) were LP whereas in 2013, 1,642/3,375 (48.7%) were LP (p = 0.63). LP was most common in central Europe (4,791/9,625, 49.8%), followed by northern (5,704/11,692; 48.8%), southern (3,550/7,760; 45.8%) and eastern Europe (541/1,377; 38.3%; p < 0.0001). There was a significant increase in LP in male and female people who inject drugs (PWID) (adjusted odds ratio (aOR)/year later 1.16; 95% confidence interval (CI): 1.02-1.32), and a significant decline in LP in northern Europe (aOR/year later 0.89; 95% CI: 0.85-0.94). Further improvements in effective HIV testing strategies, with a focus on vulnerable groups, are required across the European continent.
Resumo:
INTRODUCTION Although hepatitis C virus (HCV) screening is recommended for all HIV-infected patients initiating antiretroviral therapy, data on epidemiologic characteristics of HCV infection in resource-limited settings are scarce. METHODS We searched PubMed and EMBASE for studies assessing the prevalence of HCV infection among HIV-infected individuals in Africa and extracted data on laboratory methods used. Prevalence estimates from individual studies were combined for each country using random-effects meta-analysis. The importance of study design, population and setting as well as type of test (anti-HCV antibody tests and polymerase chain reactions) was examined with meta-regression. RESULTS Three randomized controlled trials, 28 cohort studies and 121 cross-sectional analyses with 108,180 HIV-infected individuals from 35 countries were included. The majority of data came from outpatient populations (55%), followed by blood donors (15%) and pregnant women (14%). Based on estimates from 159 study populations, anti-HCV positivity prevalence ranged between 3.3% (95% confidence interval (CI) 1.8-4.7) in Southern Africa and 42.3% (95% CI 4.1-80.5) in North Africa. Study design, type of setting and age distribution did not influence this prevalence significantly. The prevalence of replicating HCV infection, estimated from data of 29 cohorts, was 2.0% (95% CI 1.5-2.6). Ten studies from nine countries reported the HCV genotype of 74 samples, 53% were genotype 1, 24% genotype 2, 14% genotype 4 and 9% genotypes 3, 5 or 6. CONCLUSIONS The prevalence of anti-HCV antibodies is high in HIV-infected patients in Africa, but replicating HCV infection is rare and varies widely across countries.