113 resultados para 291704 Computer Communications Networks
Resumo:
Information-centric networking (ICN) has been proposed to cope with the drawbacks of the Internet Protocol, namely scalability and security. The majority of research efforts in ICN have focused on routing and caching in wired networks, while little attention has been paid to optimizing the communication and caching efficiency in wireless networks. In this work, we study the application of Raptor codes to Named Data Networking (NDN), which is a popular ICN architecture, in order to minimize the number of transmitted messages and accelerate content retrieval times. We propose RC-NDN, which is a NDN compatible Raptor codes architecture. In contrast to other coding-based NDN solutions that employ network codes, RC-NDN considers security architectures inherent to NDN. Moreover, different from existing network coding based solutions for NDN, RC-NDN does not require significant computational resources, which renders it appropriate for low cost networks. We evaluate RC-NDN in mobile scenarios with high mobility. Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN is particularly efficient in dense environments, where retrieval times can be reduced by 83% and the number of Data transmissions by 84.5% compared to NDN.
Resumo:
With the current growth of mobile devices usage, mobile net- works struggle to deliver content with an acceptable Quality of Experience. In this paper, we propose the integration of Information Centric Networking into 3GPP Long Term Evolution mobile networks, allowing its inherent caching feature to be explored in close proximity to the end users by deploying components inside the evolved Node B. Apart from the advantages brought by Information-Centric Networking’s content requesting paradigm, its inherent caching features enable lower latencies to access content and reduce traffic at the core network. Results show that the impact on the evolved Node B performance is low and ad- vantages coming from Information-Centric Networking are considerable. Thus, mobile network operators reduce operational costs and users end up with a higher perceived network quality even in peak utilization periods.
Resumo:
Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.
Resumo:
Cloudification of the Centralized-Radio Access Network (C-RAN) in which signal processing runs on general purpose processors inside virtual machines has lately received significant attention. Due to short deadlines in the LTE Frequency Division Duplex access method, processing time fluctuations introduced by the virtualization process have a deep impact on C-RAN performance. This paper evaluates bottlenecks of the OpenAirInterface (OAI is an open-source software-based implementation of LTE) cloud performance, provides feasibility studies on C-RAN execution, and introduces a cloud architecture that significantly reduces the encountered execution problems. In typical cloud environments, the OAI processing time deadlines cannot be guaranteed. Our proposed cloud architecture shows good characteristics for the OAI cloud execution. As an example, in our setup more than 99.5% processed LTE subframes reach reasonable processing deadlines close to performance of a dedicated machine.
Resumo:
Wireless networks have become more and more popular because of ease of installation, ease of access, and support of smart terminals and gadgets on the move. In the overall life cycle of providing green wireless technology, from production to operation and, finally, removal, this chapter focuses on the operation phase and summarizes insights in energy consumption of major technologies. The chapter also focuses on the edge of the network, comprising network access points (APs) and mobile user devices. It discusses particularities of most important wireless networking technologies: wireless access networks including 3G/LTE and wireless mesh networks (WMNs); wireless sensor networks (WSNs); and ad-hoc and opportunistic networks. Concerning energy efficiency, the chapter discusses challenges in access, wireless sensor, and ad-hoc and opportunistic networks.
Resumo:
In this paper, we present a revolutionary vision of 5G networks, in which SDN programs wireless network functions, and where Mobile Network Operators (MNO), Enterprises, and Over-The-Top (OTT) third parties are provided with NFV-ready Network Store. The proposed Network Store serves as a digital distribution platform of programmable Virtualized Network Functions (VNFs) that enable 5G application use-cases. Currently existing application stores, such as Apple's App Store for iOS applications, Google's Play Store for Android, or Ubuntu's Software Center, deliver applications to user specific software platforms. Our vision is to provide a digital marketplace, gathering 5G enabling Network Applications and Network Functions, written to run on top of commodity cloud infrastructures, connected to remote radio heads (RRH). The 5G Network Store will be the same to the cloud as the application store is currently to a software platform.
Resumo:
Information-centric networking (ICN) is a new communication paradigm that aims at increasing security and efficiency of content delivery in communication networks. In recent years, many research efforts in ICN have focused on caching strategies to reduce traffic and increase overall performance by decreasing download times. Since caches need to operate at line speed, they have only a limited size and content can only be stored for a short time. However, if content needs to be available for a longer time, e.g., for delay-tolerant networking or to provide high content availability similar to content delivery networks (CDNs), persistent caching is required. We base our work on the Content-Centric Networking (CCN) architecture and investigate persistent caching by extending the current repository implementation in CCNx. We show by extensive evaluations in a YouTube and webserver traffic scenario that repositories can be efficiently used to increase content availability by significantly increasing cache hit rates.
Resumo:
Low quality of wireless links leads to perpetual transmission failures in lossy wireless environments. To mitigate this problem, opportunistic routing (OR) has been proposed to improve the throughput of wireless multihop ad-hoc networks by taking advantage of the broadcast nature of wireless channels. However, OR can not be directly applied to wireless sensor networks (WSNs) due to some intrinsic design features of WSNs. In this paper, we present a new OR solution for WSNs with suitable adaptations to their characteristics. Our protocol, called SCAD-Sensor Context-aware Adaptive Duty-cycled beaconless opportunistic routing protocol is a cross-layer routing approach and it selects packet forwarders based on multiple sensor context information. To reach a balance between performance and energy-efficiency, SCAD adapts the duty-cycles of sensors according to real-time traffic loads and energy drain rates. We compare SCAD against other protocols through extensive simulations. Evaluation results show that SCAD outperforms other protocols in highly dynamic scenarios.
Resumo:
Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.
Resumo:
Information-centric networking (ICN) enables communication in isolated islands, where fixed infrastructure is not available, but also supports seamless communication if the infrastructure is up and running again. In disaster scenarios, when a fixed infrastructure is broken, content discovery algorit hms are required to learn what content is locally available. For example, if preferred content is not available, users may also be satisfied with second best options. In this paper, we describe a new content discovery algorithm and compare it to existing Depth-first and Breadth-first traversal algorithms. Evaluations in mobile scenarios with up to 100 nodes show that it results in better performance, i.e., faster discovery time and smaller traffic overhead, than existing algorithms.
Resumo:
In this work, we propose a novel network coding enabled NDN architecture for the delivery of scalable video. Our scheme utilizes network coding in order to address the problem that arises in the original NDN protocol, where optimal use of the bandwidth and caching resources necessitates the coordination of the forwarding decisions. To optimize the performance of the proposed network coding based NDN protocol and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interest messages sent by clients and intermediate nodes. This algorithm guarantees that the achieved flow of Data objects will maximize the average quality of the video delivered to the client population. To support the handling of Interest messages and Data objects when intermediate nodes perform network coding, we modify the standard NDN protocol and introduce the use of Bloom filters, which store efficiently additional information about the Interest messages and Data objects. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme performs very close to the optimal performance
Resumo:
The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.
Resumo:
Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.
Resumo:
We propose WEAVE, a geographical 2D/3D routing protocol that maintains information on a small number of waypoints and checkpoints for forwarding packets to any destination. Nodes obtain the routing information from partial traces gathered in incoming packets and use a system of checkpoints along with the segments of routes to weave end-to-end paths close to the shortest ones. WEAVE does not generate any control traffic, it is suitable for routing in both 2D and 3D networks, and does not require any strong assumption on the underlying network graph such as the Unit Disk or a Planar Graph. WEAVE compares favorably with existing protocols in both testbed experiments and simulations.