97 resultados para 1117
Resumo:
Effects of conspecific neighbours on survival and growth of trees have been found to be related to species abundance. Both positive and negative relationships may explain observed abundance patterns. Surprisingly, it is rarely tested whether such relationships could be biased or even spurious due to transforming neighbourhood variables or influences of spatial aggregation, distance decay of neighbour effects and standardization of effect sizes. To investigate potential biases, communities of 20 identical species were simulated with log-series abundances but without species-specific interactions. No relationship of conspecific neighbour effects on survival or growth with species abundance was expected. Survival and growth of individuals was simulated in random and aggregated spatial patterns using no, linear, or squared distance decay of neighbour effects. Regression coefficients of statistical neighbourhood models were unbiased and unrelated to species abundance. However, variation in the number of conspecific neighbours was positively or negatively related to species abundance depending on transformations of neighbourhood variables, spatial pattern and distance decay. Consequently, effect sizes and standardized regression coefficients, often used in model fitting across large numbers of species, were also positively or negatively related to species abundance depending on transformation of neighbourhood variables, spatial pattern and distance decay. Tests using randomized tree positions and identities provide the best benchmarks by which to critically evaluate relationships of effect sizes or standardized regression coefficients with tree species abundance. This will better guard against potential misinterpretations.
Resumo:
We agree with the authors' attitude toward fostering the principle of parsimony (also known as Ockham's razor(3) ) - whereby no unnecessary entities/labels should be posited whenever a phenomenon can be reduced to a set of less complex constituents. Nevertheless, we take issue with some of the shortcuts which we feel they engaged in along their line of reasoning. This article is protected by copyright. All rights reserved.
Resumo:
We explore the feasibility of obtaining a spatially resolved picture of Ca2+Ca2+ inward currents (ICaICa) in multicellular cardiac tissue by differentiating optically recorded Ca2+Ca2+ transients that accompany propagating action potentials. Patterned growth strands of neonatal rat ventricular cardiomyocytes were stained with the Ca2+Ca2+ indicators Fluo-4 or Fluo-4FF. Preparations were stimulated at 1 Hz, and Ca2+Ca2+ transients were recorded with high spatiotemporal resolution (50 μm50 μm, 2 kHz analog bandwidth) with a photodiode array. Signals were differentiated after appropriate digital filtering. Differentiation of Ca2+Ca2+ transients resulted in optically recorded calcium currents (ORCCs) that carried the temporal and pharmacological signatures of L-type Ca2+Ca2+ inward currents: the time to peak amounted to ∼2.1 ms∼2.1 ms (Fluo-4FF) and ∼2.4 ms∼2.4 ms (Fluo-4), full-width at half-maximum was ∼8 ms∼8 ms, and ORCCs were completely suppressed by 50 μmol/L50 μmol/LCdCl2CdCl2. Also, and as reported before from patch-clamp studies, caffeine reversibly depressed the amplitude of ORCCs. The results demonstrate that the differentiation of Ca2+Ca2+ transients can be used to obtain a spatially resolved picture of the initial phase of ICaICa in cardiac tissue and to assess relative changes of activation/fast inactivation of ICaICa following pharmacological interventions.
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.
Resumo:
We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10⁻³. The precision limit of the instrument is currently of the order of 10⁻⁴.
Resumo:
The first operations at the new High-altitude Maïdo Observatory at La Réunion began in 2013. The Maïdo Lidar Calibration Campaign (MALICCA) was organized there in April 2013 and has focused on the validation of the thermodynamic parameters (temperature, water vapor, and wind) measured with many instruments including the new very large lidar for water vapor and temperature profiles. The aim of this publication consists of providing an overview of the different instruments deployed during this campaign and their status, some of the targeted scientific questions and associated instrumental issues. Some specific detailed studies for some individual techniques were addressed elsewhere. This study shows that temperature profiles were obtained from the ground to the mesopause (80 km) thanks to the lidar and regular meteorological balloon-borne sondes with an overlap range showing good agreement. Water vapor is also monitored from the ground to the mesopause by using the Raman lidar and microwave techniques. Both techniques need to be pushed to their limit to reduce the missing range in the lower stratosphere. Total columns obtained from global positioning system or spectrometers are valuable for checking the calibration and ensuring vertical continuity. The lidar can also provide the vertical cloud structure that is a valuable complementary piece of information when investigating the water vapor cycle. Finally, wind vertical profiles, which were obtained from sondes, are now also retrieved at Maïdo from the newly implemented microwave technique and the lidar. Stable calibrations as well as a small-scale dynamical structure are required to monitor the thermodynamic state of the middle atmosphere, ensure validation of satellite sensors, study the transport of water vapor in the vicinity of the tropical tropopause and study their link with cirrus clouds and cyclones and the impact of small-scale dynamics (gravity waves) and their link with the mean state of the mesosphere.