118 resultados para stereotactic ablative radiotherapy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). METHODS This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. RESULTS For 15 × 34, 5 × 5, and 2 × 2 cm(2) fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. CONCLUSIONS The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-grade gliomas (LGGs) are a group of primary brain tumours usually encountered in young patient populations. These tumours represent a difficult challenge because many patients survive a decade or more and may be at a higher risk for treatment-related complications. Specifically, radiation therapy is known to have a relevant effect on survival but in many cases it can be deferred to avoid side effects while maintaining its beneficial effect. However, a subset of LGGs manifests more aggressive clinical behaviour and requires earlier intervention. Moreover, the effectiveness of radiotherapy depends on the tumour characteristics. Recently Pallud et al. (2012. Neuro-Oncology, 14: , 1-10) studied patients with LGGs treated with radiation therapy as a first-line therapy and obtained the counterintuitive result that tumours with a fast response to the therapy had a worse prognosis than those responding late. In this paper, we construct a mathematical model describing the basic facts of glioma progression and response to radiotherapy. The model provides also an explanation to the observations of Pallud et al. Using the model, we propose radiation fractionation schemes that might be therapeutically useful by helping to evaluate tumour malignancy while at the same time reducing the toxicity associated to the treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PurposeTo assess clinical outcomes and patterns of loco-regional failure (LRF) in relation to clinical target volumes (CTV) in patients with locally advanced hypopharyngeal and laryngeal squamous cell carcinoma (HL-SCC) treated with definitive intensity modulated radiotherapy (IMRT) and concurrent systemic therapy.MethodsData from HL-SCC patients treated from 2007 to 2010 were retrospectively evaluated. Primary endpoint was loco-regional control (LRC). Secondary endpoints included local (LC) and regional (RC) controls, distant metastasis free survival (DMFS), laryngectomy free survival (LFS), overall survival (OS), and acute and late toxicities. Time-to-event endpoints were estimated using Kaplan-Meier method, and univariate and multivariate analyses were performed using Cox proportional hazards models. Recurrent gross tumor volume (RTV) on post-treatment diagnostic imaging was analyzed in relation to corresponding CTV (in-volume, > 95% of RTV inside CTV; marginal, 20¿95% inside CTV; out-volume, < 20% inside CTV).ResultsFifty patients (stage III: 14, IVa: 33, IVb: 3) completed treatment and were included in the analysis (median follow-up of 4.2 years). Three-year LRC, DMFS and overall survival (OS) were 77%, 96% and 63%, respectively. Grade 2 and 3 acute toxicity were 38% and 62%, respectively; grade 2 and 3 late toxicity were 23% and 15%, respectively. We identified 10 patients with LRF (8 local, 1 regional, 1 local¿+¿regional). Six out of 10 RTVs were fully included in both elective and high-dose CTVs, and 4 RTVs were marginal to the high-dose CTVs.ConclusionThe treatment of locally advanced HL-SCC with definitive IMRT and concurrent systemic therapy provides good LRC rates with acceptable toxicity profile. Nevertheless, the analysis of LRFs in relation to CTVs showed in-volume relapses to be the major mode of recurrence indicating that novel strategies to overcome radioresistance are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To investigate the prognosis of adenocarcinomas of the upper third of the rectum and the rectosigmoid-junction without radiotherapy. Methods Patients from a multicenter randomized controlled trial from 1987–1993 on adjuvant chemotherapy for R0-resected colorectal cancers with stage I–III disease were retrospectively allocated: cancers of the lower two-thirds of the rectum (11 cm or less from anal-verge, Group A, n = 205), of the upper-third of the rectum and rectosigmoid-junction (>11–20 cm from anal-verge, Group B, n = 142), and of the colon (>20 cm from anal-verge, Group C, n = 378). The total mesorectal excision (TME) technique had not been introduced yet. The adjuvant chemotherapy turned out to be ineffective. None of the patients received neoadjuvant or adjuvant radiotherapy. Results The patients had a regular follow-up (median, 8.0 years). The 5-year disease-free survival (DFS) rate was 0.54 (95%CI, 0.47–0.60) in Group A, 0.68 (95%CI, 0.60–0.75) in Group B, and 0.69 (95%CI, 0.64–0.74) in Group C. The 5-year overall survival (OS) rate was 0.64 (95%CI, 0.57–0.71) in Group A, 0.79 (95%CI, 0.71–0.85) in Group B, and 0.77 (95%CI, 0.73–0.81) in Group C. Compared with Group C, patients in Group A had a significantly worse OS (hazard ratio [HR] for death 2.10) and a worse DFS (HR for relapse/death 1.93), while patients in Group B had a similar OS (HR 1.12) and DFS (HR 1.07). Conclusions Adenocarcinomas of the upper third of the rectum and the rectosigmoid-junction seem to have similar prognosis as colon cancers. Even for surgeons not familiar with the TME technique, preoperative radiotherapy may be avoided for most rectosigmoid cancers above 11 cm from anal-verge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Standard dose of external beam radiotherapy seems to be insufficient for satisfactory control of loco-regionally advanced cervical cancer. Aim of our study is to evaluate the outcome as well as early and chronic toxicities in patients with loco-regionally advanced cervical cancer, treated with dose escalated intensity modulated radiotherapy (IMRT) combined with cisplatin chemotherapy. MATERIAL AND METHODS Thirty-nine patients with cervical carcinoma FIGO stage IB2 - IVA were treated with curative intent between 2006 and 2010. The dose of 50.4 Gy was prescribed to the elective pelvic nodal volume. Primary tumors < 4 cm in diameter (n = 6; 15.4 %) received an external beam radiotherapy (EBRT) boost of 5.4 Gy, primary tumors > 4 cm in diameter (n = 33; 84.6 %) received an EBRT boost of 9 Gy. Patients with positive lymph nodes detected with (18)FDG-PET/CT (n = 22; 56.4 %) received a boost to a total dose of 59.4 - 64.8 Gy. The para-aortic region was included in the radiation volume in 8 (20.5 %) patients and in 5 (12.8 %) patients the para-aortic macroscopic lymph nodes received an EBRT boost. IMRT was followed with a 3D planned high dose rate intrauterine brachytherapy given to 36 (92.3 %) patients with a total dose ranging between 15-18 Gy in three fractions (single fraction: 4-6.5 Gy). Patients without contraindications (n = 31/79.5 %) received concomitantly a cisplatin-based chemotherapy (40 mg/kg) weekly. Toxicities were graded according to the common terminology criteria for adverse events (CTCAE v 4.0). RESULTS Mean overall survival for the entire cohort was 61.1 months (±3.5 months). Mean disease free survival was 47.2 months (±4.9 months) and loco-regional disease free survival was 55.2 months (±4.4 months). 65 % of patients developed radiotherapy associated acute toxicities grade 1, ca. 30 % developed toxicities grade 2 and just two (5.2 %) patients developed grade 3 toxicities, one acute diarrhea and one acute cystitis. 16 % of patients had chronic toxicities grade 1, 9 % grade 2 and one patient (2.6 %) toxicities grade 3 in the form of vaginal dryness. CONCLUSION Dose escalated IMRT appears to have a satisfactory outcome with regards to mean overall survival, disease free and loco-regional disease free survival, whereas the treatment-related toxicities remain reasonably low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined use of androgen deprivation therapy (ADT) and image-guided radiotherapy (IGRT) can improve overall survival in aggressive, localized prostate cancer. However, owing to the adverse effects of prolonged ADT, it is imperative to identify the patients who would benefit from this combined-modality therapy relative to the use of IGRT alone. Opportunities exist for more personalized approaches in treating aggressive, locally advanced prostate cancer. Biomarkers--such as disseminated tumour cells, circulating tumour cells, genomic signatures and molecular imaging techniques--could identify the patients who are at greatest risk for systemic metastases and who would benefit from the addition of systemic ADT. By contrast, when biomarkers of systemic disease are not present, treatment could proceed using local IGRT alone. The choice of drug, treatment duration and timing of ADT relative to IGRT could be predicated on these personalized approaches to prostate cancer medicine. These novel treatment intensification and reduction strategies could result in improved prostate-cancer-specific survival and overall survival, without incurring the added expense of metabolic syndrome and other adverse effects of ADT in all patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Magnetic resonance imaging (MRI) of the prostate is considered to be the most precise noninvasive staging modality for localized prostate cancer. Multiparametric MRI (mpMRI) dynamic sequences have recently been shown to further increase the accuracy of staging relative to morphological imaging alone. Correct radiological staging, particularly the detection of extraprostatic disease extension, is of paramount importance for target volume definition and dose prescription in highly-conformal curative radiotherapy (RT); in addition, it may affect the risk-adapted duration of additional antihormonal therapy. The purpose of our study was to analyze the impact of mpMRI-based tumor staging in patients undergoing primary RT for prostate cancer. METHODS A total of 122 patients admitted for primary RT for prostate cancer were retrospectively analyzed regarding initial clinical and computed tomography-based staging in comparison with mpMRI staging. Both tumor stage shifts and overall risk group shifts, including prostate-specific antigen (PSA) level and the Gleason score, were assessed. Potential risk factors for upstaging were tested in a multivariate analysis. Finally, the impact of mpMRI-based staging shift on prostate RT and antihormonal therapy was evaluated. RESULTS Overall, tumor stage shift occurred in 55.7% of patients after mpMRI. Upstaging was most prominent in patients showing high-risk serum PSA levels (73%), but was also substantial in patients presenting with low-risk PSA levels (50%) and low-risk Gleason scores (45.2%). Risk group changes occurred in 28.7% of the patients with consequent treatment adaptations regarding target volume delineation and duration of androgen deprivation therapy. High PSA levels were found to be a significant risk factor for tumor upstaging and newly diagnosed seminal vesicle infiltration assessed using mpMRI. CONCLUSIONS Our findings suggest that mpMRI of the prostate leads to substantial tumor upstaging, and can considerably affect treatment decisions in all patient groups undergoing risk-adapted curative RT for prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION External beam radiotherapy (EBRT), with or without androgen deprivation therapy (ADT), is an established treatment option for nonmetastatic prostate cancer. Despite high-level evidence from several randomized trials, risk group stratification and treatment recommendations vary due to contradictory or inconclusive data, particularly with regard to EBRT dose prescription and ADT duration. Our aim was to investigate current patterns of practice in primary EBRT for prostate cancer in Switzerland. MATERIALS AND METHODS Treatment recommendations on EBRT and ADT for localized and locally advanced prostate cancer were collected from 23 Swiss radiation oncology centers. Written recommendations were converted into center-specific decision trees, and analyzed for consensus and differences using a dedicated software tool. Additionally, specific radiotherapy planning and delivery techniques from the participating centers were assessed. RESULTS The most commonly prescribed radiation dose was 78 Gy (range 70-80 Gy) across all risk groups. ADT was recommended for intermediate-risk patients for 6 months in over 80 % of the centers, and for high-risk patients for 2 or 3 years in over 90 % of centers. For recommendations on combined EBRT and ADT treatment, consensus levels did not exceed 39 % in any clinical scenario. Arc-based intensity-modulated radiotherapy (IMRT) is implemented for routine prostate cancer radiotherapy by 96 % of the centers. CONCLUSION Among Swiss radiation oncology centers, considerable ranges of radiotherapy dose and ADT duration are routinely offered for localized and locally advanced prostate cancer. In the vast majority of cases, doses and durations are within the range of those described in current evidence-based guidelines.