90 resultados para shallow lake sediment
Resumo:
Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N–22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380–730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907–2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase from ca. 1980 ± 2 onwards. We demonstrate that PC2 (24.4%, Chl-a-related pigments) is not affected by the eutrophication signal, but instead is sensitive to spring (MAM) temperature (r = 0.63, pcorr < 0.05, RMSEP = 0.56 °C; 5-yr filtered). Limnological monitoring data (2011–2013) support this finding. We also demonstrate that scanning visible reflectance spectroscopy (VIS-RS) data can be calibrated to HPLC-measured chloropigment data and be used to infer concentrations of sedimentary Chl-a derivatives {pheophytin a + pyropheophytin a}. This offers the possibility for very high-resolution (multi)millennial-long paleoenvironmental reconstructions.
Resumo:
Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.
Resumo:
Banyoles is the largest and deepest lake of karstic-tectonic origin in the Iberian Peninsula. The lake comprises several circular sub-basins characteri- zed by different oxygenation conditions at their hypolimnions. The multiproxy analysis of a > 5 m long sediment core combined with high resolution seis- mic stratigraphy (3.5 kHz pinger and multi-frequency Chirp surveys), allow a precise reconstruction of the evolution of a karstic depression (named B3) until present times. Local meromictic conditions in this sub-basin have been conducive to deposition and preservation of ca. 85 cm of varved sediments since the late 19th century. The onset of these conditions is likely related to lake waters eutrophication caused by increasing farming activities in the wa- tershed. Increasing clastic input and organic productivity during the second half of the 20th century have also been recorded within the laminated sedi- ments, revealing an intensification of human impact and warmer water tem- peratures.
Resumo:
We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.
Resumo:
The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large-scale (volumes of 22 × 106 to 250 × 106 m3) mass-transport deposits, associated with five mass-movement events within 2600 years (4000 cal bp to 563 ad). The mass-transport deposits result from: (i) lateral slope failures (mass-transport deposit B at 3895 ± 225 cal bp and mass-transport deposits A and C at 3683 ± 128 cal bp); and (ii) Rhône delta collapses (mass-transport deposits D to G dated at 2650 ± 150 cal bp, 2185 ± 85 cal bp, 1920 ± 120 cal bp and 563 ad, respectively). Mass-transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass-transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass-transport deposit E) or unknown external triggers (mass-transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass-transport deposits are large enough to have generated at least metre-scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad, two small-scale (volumes of 1 to 2 × 106 m3) mass-transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass-transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad, respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr−1.
Resumo:
Lake Towuti (2.5°S, 121.5°E) is a long-lived, tectonic lake located on the Island of Sulawesi, Indonesia, and in the center of the Indo-Pacific warm pool (IPWP). Lake Towuti is connected with upstream lakes Matano and Mahalona through the Mahalona River, which constitutes the largest inlet to the lake. The Mahalona River Delta is prograding into Lake Towuti’s deep northern basin thus exerting significant control on depositional processes in the basin. We combine high-resolution seismic reflection and sedimentological datasets from a 19.8-m-long sediment piston core from the distal edge of this delta to characterize fluctuations in deltaic sedimentation during the past ~29 kyr BP and their relation to climatic change. Our datasets reveal that, in the present, sedimentation is strongly influenced by deposition of laterally transported sediments sourced from the Mahalona River Delta. Variations in the amount of laterally transported sediments, as expressed by coarse fraction amounts in pelagic muds and turbidite recurrence rates and cumulative thicknesses, are primarily a function of lake-level induced delta slope instability and delta progradation into the basin. We infer lowest lake-levels between ~29 and 16, a gradual lake level rise between ~16 and 11, and high lake-levels between ~11 and 0 kyr BP. Periods of highest turbidite deposition, ~26 to 24 and ~18 to 16 kyr BP coincide with Heinrich events 2 and 1, respectively. Our lake-level reconstruction therefore supports previous observations based on geochemical hydroclimate proxies of a very dry last glacial and a wet Holocene in the region, and provides new evidence of millennial-scale variations in moisture balance in the IPWP.
Resumo:
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.
Resumo:
We explored the extent to which δ13C and δD values of freshwater bryozoan statoblasts can provide information about the isotopic composition of zooids, bryozoan food and surrounding water. Bryozoan samples were collected from 23 sites and encompassed ranges of nearly 30‰ for δ13C and 100‰ for δD values. δ13C offsets between zooids and statoblasts generally ranged from −3 to +4.5‰, with larger offsets observed in four samples. However, a laboratory study with Plumatella emarginata and Lophopus crystallinus demonstrated that, in controlled settings, zooids had only 0–1.2‰ higher δ13C values than statoblasts, and 1.7‰ higher values than their food. At our field sites, we observed a strong positive correlation between median δ13C values of zooids and median δ13C values of corresponding statoblasts. We also observed a positive correlation between median δD values of zooids and statoblasts for Plumatella, and a positive correlation between median δD values of statoblasts and δD values of lake water for Plumatella and when all bryozoan taxa were examined together. Our results suggest that isotope measurements on statoblasts collected from flotsam or sediment samples can provide information on the feeding ecology of bryozoans and the H isotopic composition of lake water.
Resumo:
Several short sediment cores of between 35 and 40 cm from Hagelseewli, a small, remote lake in the Swiss Alps at an elevation of 2339 m a.s.l. were correlated according to their organic matter content. The sediments are characterized by organic silts and show in their uppermost part a surprisingly high amount of organic matter (30-35%). Synchronous changes, occurring in pollen from snow-bed vegetation, the alga Pediastrum, chironomids, and grain-size composition, point to a climatic change interpreted as cooler or shorter summers that led to prolonged ice-cover on the lake. According to palynological results the sediments date back to at least the early 15th century A.D., with the cooling phase encompassing the period between late 16th and the mid-19th century thus coinciding with the Little Ice Age. Low concentrations of both chironomid head capsules and cladoceran remains in combination with results from fossil pigment analyses point to longer periods of bottom-water anoxia as a result of long-lasting ice-cover that prevented mixing of the water column. According to our results aquatic biota in Hagelseewli are mainly indirectly influenced by climate change. The duration of ice-cover on the lake controls the mixing of the water column as well as light-availability for phytoplankton blooms.
Resumo:
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.
Resumo:
Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.
Resumo:
Subsurface fluid flow can be affected by earthquakes; increased spring activity, mud vol- cano eruptions, groundwater fluctuations, changes in geyser frequency, and other forms of altered subsurface fluid flow have been documented during, after, or even prior to seismic shaking. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge groundwater from the Jura Mountains karstic aquifers and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from these phases of sediment expulsion and of multiple time-correlative mass-transport deposits. We report five striking instances of concurrent multiple subsurface sediment deposits and multiple mass- transport deposits since late glacial times, for which we propose past earthquakes as a trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum mac- roseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as a paleoseismic proxy.
Resumo:
Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC–0 AD), the Medieval Climate Anomaly (MCA) (800–1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400–500 BC, the Late Roman and the Early Medieval periods (0–800 AD) and during the Little Ice Age (1400–1800 AD). Hydrological fluctuations recorded in Butrint are in phase with most central and western Mediterranean records and correlate with NAO variability. In contrast, opposite hydrological patterns have been recorded in the Eastern Balkans and the Levant during the last millennium, emphasizing a complex spatial variability in the region. Phases of maximum settlement intensity in Butrint (Roman-Late Antique) coincide with warmer and/or stable climate periods (0–800 AD and MCA, respectively), indicating a long-term influence of climatic conditions on human activities. The Late Holocene sedimentary record of Lake Butrint demonstrates the complex interplay of climate variability, tectonics and human impact in the recent evolution of coastal Mediterranean regions.
Resumo:
68 lakes (63 Swiss, 2 French and 3 Italian) located in an altitudinal range between 334 and 2339m spanning a wide range of land-use have been investigated. The aim of the study was to discuss influences of geographic location, vegetation and land-use in the catchment area on the water and sediment chemistry of small lakes. Detailed quantitative description of land-use, vegetation, and climate in the watershed of all lakes was established. Surface and bottom water samples collected from each lake were analyzed for major ions and nutrients. Correlations were interpreted using linear regression analysis. Chemical parameters of water and sediment reflect the characteristics of the catchment areas. All lakes were alkaline since they were situated on calcareous bedrock. Concentrations of nitrogen and phosphorus strongly increase with increasing agricultural land-use. Na and K, however, are positively correlated with the amount of urbanization within the catchment area. These elements as well as dissolved organic carbon (DOC), Mg, Ca, and alkalinity, increase when the catchment is urbanized or used for agriculture. Total nitrogen and organic carbon in the sediments decrease distinctly if large parts of the catchment consist of bare land. No correlations between sediment composition and maximum water depth or altitude of the lakes were found.¶Striking differences in the water compositions of lakes above and below approximately 700 m of altitude were observed. Concentrations of total nitrogen and nitrate, total phosphorus, DOC, Na, K, Mg, Ca, and alkalinity are distinctly higher in most lakes below 700 m than above, and the pH of the bottom waters of these lakes is generally lower. Estimates of total nitrogen concentrations, even in remote areas, indicate that precipitation is responsible for increased background concentrations. At lower altitudes nitrogen concentrations in lakes is explained by the nitrogen loaded rain from urban areas deposited on the catchment, and with high percentages of agricultural land-use in the watershed.
Resumo:
Stable isotope analyses of discrete seasonal layers from a 108-yr annually laminated freeze-core from Baldeg-gersee, a small, eutrophic lake in central Switzerland, provide information on the climatological and environmental factors, including lake eutrophication, that control oxygen and carbon isotopic composition of epilimnic biologically induced calcite precipitate. During the last 100 yr, Baldeggersee has undergone major increases in productivity and eutrophication in response to nutrient loading from agriculture and industrialization in the lake's watershed. Calibration of the isotopic signal in Baldeggersee to historical limnological data quantitatively links evidence of isotopic depletion in the sedimented calcite to trophic state of the lake. δ18O values from the spring/summer “light” sediment layers steadily diverged to more depleted values in response to historical eutrophication: measured δ18O values were up to 21.5‰ more negative than calculated equilibrium δ18O values. Evidence for 13C depletion in the calcite, relative to equilibrium values, is more difficult to ascertain because of an overall dominance of isotopic enrichment in the dissolved inorganic pool as productivity in Baldeggersee increases. A positive association exists between the degree of oxygen-18 depletion and the calcite crystal size. Thus, large amorphous calcite grains can be used as a proxy for recognizing apparent isotopic nonequilibrium in sediment sequences from highly productive lacustrine environments from all geologic time scales. In contrast to the light layers, the oxygen isotopic composition of the calcite in the late summer/fall “dark” sediment layers is unaffected by the apparent isotope nonequilibrium. Oxygen and carbon isotope values from the dark laminae in the Baldeggersee sediment therefore provide environmental and climatological proxies that can be calibrated with known environmental and regional climate data for the last century.