134 resultados para rat model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

TLR2 signaling participates in the pathogenesis of pneumococcal meningitis. In infant rats, the TLR2 agonist Pam(3)CysSK(4) was applied intracisternally (0.5 microg in 10 microl saline) alone or after induction of pneumococcal meningitis to investigate the effect of TLR2 activation on cerebrospinal fluid (CSF) inflammation and hippocampal apoptosis. A dose effect of Pam(3)CysSK(4) on apoptosis was investigated by intracisternal application of 0.5 microg in 10 microl saline and 40 microg in 20 microl saline. Pam(3)CysSK(4) neither induced apoptosis in sham-operated mice nor aggravated apoptosis in acute infection. However, Pam(3)CysSK(4) induced pleocytosis, TNF-alpha and MMP-9 in CSF in sham-infection but not during acute meningitis. We conclude that TLR2 signaling triggered by Pam(3)CysSK(4) at a dosage capable to induce a neuroinflammatory response does not induce hippocampal apoptosis in the infant rat model of experimental pneumococcal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND In Parkinson's disease (PD), bradykinesia, or slowness of movement, only appears after a large striatal dopamine depletion. Compensatory mechanisms probably play a role in this delayed appearance of symptoms. OBJECTIVE Our hypothesis is that the striatal direct and indirect pathways participate in these compensatory mechanisms. METHODS We used the unilateral 6-hydroxydopamine (6-OHDA) rat model of PD and control animals. Four weeks after the lesion, the spontaneous locomotor activity of the rats was measured and then the animals were killed and their brain extracted. We quantified the mRNA expression of markers of the striatal direct and indirect pathways as well as the nigral expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH) mRNA. We also carried out an immunohistochemistry for the striatal TH protein expression. RESULTS As expected, the unilateral 6-OHDA rats presented a tendency to an ipsilateral head turning and a low locomotor velocity. In 6-OHDA rats only, we observed a significant and positive correlation between locomotor velocity and both D1-class dopamine receptor (D1R) (direct pathway) and enkephalin (ENK) (indirect pathway) mRNA in the lesioned striatum, as well as between D1R and ENK mRNA. CONCLUSIONS Our results demonstrate a strong relationship between both direct and indirect pathways and spontaneous locomotor activity in the parkinsonian rat model. We suggest a synergy between both pathways which could play a role in compensatory mechanisms and may contribute to the delayed appearance of bradykinesia in PD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an infant rat model of pneumococcal meningitis the effect of dexamethasone on neuronal injury in the hippocampus and on learning disability after recovery from the disease was examined. Treatment with dexamethasone or vehicle was started 18 h after infection, concomitant with antibiotics. Neuronal apoptosis in the hippocampal dentate gyrus 34 h after infection was significantly aggravated by dexamethasone treatment compared with vehicle controls (p = 0.02). Three weeks after acute pneumococcal meningitis, learning capacity of animals was assessed in the Morris water maze. The results showed a significantly impaired learning performance of infected animals treated with dexamethasone compared with vehicle controls (p = 0.01). Dexamethasone had no effect on hippocampal injury or learning in uninfected controls. Thus, dexamethasone as adjuvant therapy increased hippocampal cell injury and reduced learning capacity in this model of pneumococcal meningitis in infant rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial meningitis causes neuronal apoptosis in the hippocampal dentate gyrus, which is associated with learning and memory impairments after cured disease. The execution of the apoptotic program involves pathways that converge on activation of caspase-3, which is required for morphological changes associated with apoptosis. Here, the time course and the role of caspase-3 in neuronal apoptosis was assessed in an infant rat model of pneumococcal meningitis. During clinically asymptotic meningitis (0-12 h after infection), only minor apoptotic damage to the dentate gyrus was observed, while the acute phase (18-24 h) was characterized by a massive increase of apoptotic cells, which peaked at 36 h. In the subacute phase of the disease (36-72 h), the number of apoptotic cells decreased to control levels. Enzymatic caspase-3 activity was significantly increased in hippocampal tissue of infected animals compared to controls at 22 h. The activated enzyme was localized to immature cells of the dentate gyrus, and in vivo activity was evidenced by cleavage of the amyloid-beta precursor protein. Intracisternal administration of the caspase-3-specific inhibitor Ac-DEVD-CHO significantly reduced apoptosis in the hippocampal dentate gyrus. In contrast to a study where the decrease of hippocampal apoptosis after administration of a pan-caspase inhibitor was due to downmodulation of the inflammatory response, our data demonstrate that specific inhibition of caspase-3 did not affect inflammation assessed by TNF-alpha and IL-1beta concentrations in the cerebrospinal fluid space. Taken together, the present results identify caspase-3 as a key effector of neuronal apoptosis in pneumococcal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Progression of liver fibrosis to HCC (hepatocellular carcinoma) is a very complex process which involves several pathological phenomena, including hepatic stellate cell activation, inflammation, fibrosis and angiogenesis. Therefore inhibiting multiple pathological processes using a single drug can be an effective choice to curb the progression of HCC. In the present study, we used the mTOR inhibitor everolimus to observe its effect on the in vitro activation of hepatic stellate cells and angiogenesis. The results of the present study demonstrated that everolimus treatment blocked the functions of the immortalized human activated hepatic stellate cell line LX-2 without affecting the viability and migration of primary human stellate cells. We also observed that treatment with everolimus (20 nM) inhibited collagen production by activated stellate cells, as well as cell contraction. Everolimus treatment was also able to attenuate the activation of primary stellate cells to their activated form. Angiogenesis studies showed that everolimus blocked angiogenesis in a rat aortic ring assay and inhibited the tube formation and migration of liver sinusoidal endothelial cells. Finally, everolimus treatment reduced the load of tumoral myofibroblasts in a rat model of HCC. These data suggest that everolimus targets multiple mechanisms, making it a potent blocker of the progression of HCC from liver fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, systemic immunosuppression is used in vascularized composite allotransplantation (VCA). This treatment has considerable side effects and reduces the quality of life of VCA recipients. We loaded the immunosuppressive drug tacrolimus into a self-assembled hydrogel, which releases the drug in response to proteolytic enzymes that are overexpressed during inflammation. A one-time local injection of the tacrolimus-laden hydrogel significantly prolonged graft survival in a Brown Norway-to-Lewis rat hindlimb transplantation model, leading to a median graft survival of >100 days compared to 33.5 days in tacrolimus only-treated recipients. Control groups with no treatment or hydrogel only showed a graft survival of 11 days. Histopathological evaluation, including anti-graft antibodies and complement C3, revealed significantly reduced immune responses in the tacrolimus-hydrogel group compared with tacrolimus only. In conclusion, a single-dose local injection of an enzyme-responsive tacrolimus-hydrogel is capable of preventing VCA rejection for >100 days in a rat model and may offer a new approach for immunosuppression in VCA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pneumococcal meningitis is associated with high morbidity and mortality rates. Brain damage caused by this disease is characterized by apoptosis in the hippocampal dentate gyrus, a morphological correlate of learning deficits in experimental paradigms. The mood stabilizer lithium has previously been found to attenuate brain damage in ischemic and inflammatory diseases of the brain. An infant rat model of pneumococcal meningitis was used to investigate the neuroprotective and neuroregenerative potential of lithium. To assess an effect on the acute disease, LiCl was administered starting five days prior to intracisternal infection with live Streptococcus pneumoniae. Clinical parameters were recorded, cerebrospinal fluid (CSF) was sampled, and the animals were sacrificed 42 hours after infection to harvest the brain and serum. Cryosections of the brains were stained for Nissl substance to quantify brain injury. Hippocampal gene expression of Bcl-2, Bax, p53, and BDNF was analyzed. Lithium concentrations were measured in serum and CSF. The effect of chronic lithium treatment on spatial memory function and cell survival in the dentate gyrus was evaluated in a Morris water maze and by quantification of BrdU incorporation after LiCl treatment during 3 weeks following infection. In the hippocampus, LiCl significantly reduced apoptosis and gene expression of Bax and p53 while it increased expression of Bcl-2. IL-10, MCP-1, and TNF were significantly increased in animals treated with LiCl compared to NaCl. Chronic LiCl treatment improved spatial memory in infected animals. The mood stabilizer lithium may thus be a therapeutic alternative to attenuate neurofunctional deficits as a result of pneumococcal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiac tissue engineering approaches can deliver large numbers of cells to the damaged myocardium and have thus increasingly been considered as a possible curative treatment to counteract the high prevalence of progressive heart failure after myocardial infarction (MI). Optimal scaffold architecture and mechanical and chemical properties, as well as immune- and bio-compatibility, need to be addressed. We demonstrated that radio-frequency plasma surface functionalized electrospun poly(ɛ-caprolactone) (PCL) fibres provide a suitable matrix for bone-marrow-derived mesenchymal stem cell (MSC) cardiac implantation. Using a rat model of chronic MI, we showed that MSC-seeded plasma-coated PCL grafts stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular patch implantation, whereas a steadied function was observed 4 weeks after MSC-patch implantation (relative decreases of 6% for both EF and FS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED Adenovirus dodecahedron (Dd), a nanoparticulate proteinaceous biodegradable virus-like particle (VLP), was used as a vector for delivery of an oncogene inhibitor to hepatocellular carcinoma (HCC) rat orthotopic model. Initiation factor eIF4E is an oncogene with elevated expression in human cancers. Cell-impermeant eIF4E inhibitor, cap structure analog (cap) and anti-cancer antibiotic doxorubicin (Dox) were delivered as Dd conjugates. Dd-cap and Dd-dox inhibited cancer cell culture proliferation up to 50 and 84%, respectively, while with free Dox similar results could be obtained only at a 5 times higher concentration. In animal HCC model the combination treatment of Dd-cap/Dd-dox caused 40% inhibition of tumor growth. Importantly, the level of two pro-oncogenes, eIF4E and c-myc, was significantly diminished in tumor sections of treated rats. Attachment to Dd, a virus-like particle, permitted the first demonstration of cap analog intracellular delivery and resulted in improved doxorubicin delivery leading to statistically significant inhibition of HCC tumor growth. FROM THE CLINICAL EDITOR Adenovirus dodecahedron, a nanoparticulate proteinaceous biodegradable virus-like particle was used in this study as a vector for the concomitant delivery of cap structure analog and doxorubicine to hepatocellular carcinoma in a rat model, resulting in significant inhibition of tumor growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Pneumococcal meningitis (PM) is characterized by high mortality and morbidity including long-term neurofunctional deficits. Neuropathological correlates of these sequelae are apoptosis in the hippocampal dentate gyrus and necrosis in the cortex. Matrix metalloproteinases (MMPs) play a critical role in the pathophysiology of PM. RS-130830 (Ro-1130830, CTS-1027) is a potent partially selective inhibitor of MMPs of a second generation and has been evaluated in clinical trials as an anti-arthritis drug. It inhibits MMPs involved in acute inflammation but has low activity against MMP-1 (interstitial collagenase), MMP-7 (matrilysin) and tumour necrosis factor α converting enzyme (TACE). METHODS A well-established infant rat model of PM was used where live Streptococcus pneumoniae were injected intracisternally and antibiotic treatment with ceftriaxone was initiated 18 h post infection (hpi). Treatment with RS-130830 (75 mg/kg bis in die (bid) i.p., n = 40) was started at 3 hpi while control littermates received the vehicle (succinylated gelatine, n = 42). RESULTS Cortical necrosis was significantly attenuated in animals treated with RS-130830, while the extent of hippocampal apoptosis was not influenced. At 18 hpi, concentrations of interleukin (IL)-1β and IL-10 were significantly lower in the cerebrospinal fluid of treated animals compared to controls. RS-130830 significantly reduced weight loss and leukocyte counts in the cerebrospinal fluid of survivors of PM. CONCLUSION This study identifies MMP inhibition, specifically with RS-130830, as an efficient strategy to attenuate disease severity and cortical brain injury in PM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Survivors of premature birth suffer from long term disabilities. Synthetic PreImplantation Factor (sPIF*) modulates inflammatory responses and reverses neuroinflammation. Proteinkinase A (PKA) and protein kinase C (PKC) are crucial signaling molecules. PKA up-regulates IL-10 and brain-derived neurotrophic factor (BDNF) expression, which exert neuroprotective effects. Anti-apoptotic phosphorylation of Bad is mediated by PKA. PKC phosphorylates GAP-43, a marker for neuronal plasticity and structural recovery. We explored sPIF protective role in neuronal (N2a) cells and in a rat model of encephalopathy of prematurity. *proprietary. STUDY DESIGN: Cells were subjected to LPS and treated with sPIF or scrambled sPIF. Neonatal rats (postnatal day 3: P3) were subjected to LPS, ligation of carotid artery, and hypoxia (8% O2, 65min; n¼ 30). sPIF (0.75mg/kg twice daily) was injected (P6-13) and brains harvested at P13. sPIF’s potential and mechanisms were evaluated using immunohistochemistry, ELISA, Western Blot, and qRT-PCR. Data were analyzed using two-tailed Student’s t-test. P<0.05 wasconsidered statistically significant. RESULTS: In vitro sPIF increased PKA/PKC activity in time dependent manner (Fig. 1A). sPIF induced higher IL-10, BDNF, and GAP-43 and lower CASP3, BAD, and TNF-a mRNA levels (Fig. 1B,C). sPIF increased pGap-43/Gap-43 and decreased pBad/Bad ratio while decreasing Bad (Fig. 1 D,E). In brain tissue sPIF treatment resulted in rescued neuronal number (NeuN positive cells) and reduced apoptosis (Casp-3 positive cells) with decreased glial (Iba-1 positive cells) activation (Fig. 2A,B). The Iba-1 morphology changed from predominantly amoeboid to ramified state. Additionally sPIF increased IL-10 mRNA levels (Fig. 2C) and pGap-43/Gap-43 ratio (Fig. 2D). CONCLUSION: sPIF modulates PKA/PKC pathways reducing apoptosis and inflammatory responses while increasing neuronal plasticity and survival. The identified PKA/PKC regulatory axis strengthens the potential of sPIF in reducing the burden of prematurity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streptococcus pneumoniaebacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement.