89 resultados para multi-project environment
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Annual project report. Project summary, list of outputs, follow-up activities, appraisal by Management Team and budget
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Annual project report. Project description, budget, impact, achievement of objectives and outputs, and appraisal by Management Team.
Resumo:
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.
Resumo:
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users’ knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Resumo:
CODE, the Center for Orbit Determination in Europe, is a joint venture of the following four institutions: Astronomical Institute, University of Bern (AIUB), Bern, Switzerland; Federal Office of Topography swisstopo, Wabern, Switzerland; Federal Agency of Cartography and Geodesy (BKG), Frankfurt a. M., Germany; Institut für Astronomische und Physikalische Geodäsie, Technische Universität München (IAPG, TUM), Munich, Germany. It acts as a global analysis center of the International GNSS Service (IGS). The operational computations are performed at AIUB using the latest development version of the Bernese GNSS Software. In this context a multi-GNSS solution is generated considering all active GPS, GLONASS, Galileo, BeiDou (expect for GEOs), and QZSS satellites as a contribution to the IGS-MGEX project. The results are published with a delay of about two weeks.
Resumo:
Introduction: International and national sports federations as well as their member organisations (usually sports clubs) are key actors within the sports system and have a wide range of relationships outside the sports system (e.g. with the state, sponsors, and the media). They are currently facing major challenges such as growing competition in top-‐level sports, democratisation of sports with “sports for all” and sports as the answer to social problems (integration, education, health, unemployment, etc.). In this context, professionalising sports organisations seems to be an appropriate strategy to face these challenges and solve current problems. This has led to a profound organisational change, particularly within sports federations, characterised by the strengthening of institutional management (managerialism) and the implementation of efficiency-‐based management instruments and paid staff. In this context the questions arise how sports organisations professionalise and what consequences this may have. Theoretical framework: The goal of our presentation is to review the international literature and develop an appropriate concept of professionalisation in sport federations. Our multi-‐level approach based on social theory of action integrates the current concepts and perspectives for analysing professionalisation in sports federations. We specify the framework for the following research perspectives: (1) forms, (2) causes and mechanisms, (3) consequences and (4) dynamics, and discuss the reciprocal relations between sports federations and their member organisations in this context. When analysing these different research perspectives, it is important to select or elaborate appropriate theoretical concepts to match the general multi-‐level framework Discussion: The elaborated multi-‐level framework for analysing professionalisation in sports federations is able to integrate most of the existing theoretical concepts and therefore, the broad range of endogenous as well as exogenous factors that might influence the professionalisation of sports organisations. Based on the theoretical framework, we can identify several consequences for the methodological design of studies intending to analyse the different perspectives of professionalisation in sports organisations: Data have to be collected on the different levels. Not only the forms of professionalisation and relevant structures of the organisations should be taken into account but also important characteristics of the environment (macro level) as well as members or member organisations, particularly key actors who might play a crucial role in gaining an understanding of professionalisation processes in sports organisations. In order to carry out a complex organisational research design, it seems necessary to focus on case studies – an approach that has become increasingly important in organisational research. Different strategies and methods of data collection have to be used within the case studies (e.g. interviews with experts within the organisations, questionnaire for selected people in the organisation, document analysis). Therefore, qualitative and quantitative research strategies have to be combined.
Resumo:
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Resumo:
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.