93 resultados para limb girdle muscular dystrophy 2A
Resumo:
To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.
Resumo:
We hypothesized that in untrained individuals (n=6) a single bout of ergometer endurance exercise provokes a concerted response of muscle transcripts towards a slow-oxidative muscle phenotype over a 24-h period. We further hypothesized this response during recovery to be attenuated after six weeks of endurance training. We monitored the expression profile of 220 selected transcripts in muscle biopsies before as well as 1, 8, and 24 h after a 30-min near-maximal bout of exercise. The generalized gene response of untrained vastus lateralis muscle peaked after 8 h of recovery (P=0.001). It involved multiple transcripts of oxidative metabolism and glycolysis. Angiogenic and cell regulatory transcripts were transiently reduced after 1 h independent of the training state. In the trained state, the induction of most transcripts 8 h after exercise was less pronounced despite a moderately higher relative exercise intensity, partially because of increased steady-state mRNA concentration, and the level of metabolic and extracellular RNAs was reduced during recovery from exercise. Our data suggest that the general response of the transcriptome for regulatory and metabolic processes is different in the trained state. Thus, the response is specifically modified with repeated bouts of endurance exercise during which muscle adjustments are established.
Resumo:
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Resumo:
OBJECTIVES: To evaluate the influence of secondary infection on major amputation in chronic critical leg ischemia (CLI). DESIGN: Prospective, controlled observational study. MATERIALS AND METHODS: Sixty-seven patients with CLI and ischemic lesions participated in the study. Presence of infection was defined by clinical, laboratory and radiological criteria. Patients were categorized as having no local infection, soft tissue infection or osteomyelitis treated without antibiotics, amoxicillin/clavulanacid for 1 month or ciprofloxacin and clindamycin for 3 months, respectively. Clinical outcome was assessed at 2, 6 and 12 months. Study endpoints were major amputation and mortality. Analyses were performed using the Kaplan-Meier method. RESULTS: Forty-seven of 67 patients had a local infection. Major amputation was lower in patients with successful revascularization as compared to patients unsuitable for or with failed (without) revascularization (0% vs 26%, p<0.01). In patients with successful revascularization the probability of complete healing was lower with secondary infection (23% vs 71%, p=0.03). In patients without revascularization complete healing was rare (<10%), but secondary infection did not influenced major amputation, mortality or serious adverse events. CONCLUSION: Secondary infection reduces the likelihood of successful healing following revascularisation of CLI.
Resumo:
PURPOSE: To evaluate the primary success and short-term patency associated with a new 4-F sheath-compatible self-expanding nitinol stent after failed conventional angioplasty of distal popliteal and infrapopliteal lesions in severe lifestyle-limiting claudication (LLC) and chronic critical limb ischemia (CLI). MATERIALS AND METHODS: Between May 2003 and July 2005, 35 patients with Rutherford category 3-5 disease (16 patients with CLI, 19 patients with LLC) underwent percutaneous transluminal angioplasty (PTA) and stent implantation. Indications for stent placement were residual stenosis, flow-limiting dissections, or elastic recoil after PTA. Before and after the intervention and during the 6-month follow-up, clinical investigation, color-flow and duplex Doppler ultrasonography, and digital subtraction angiography were performed. Technical success, primary patency at 6 months, clinical improvement as defined by Rutherford with clinical and hemodynamic measures, and complications were evaluated. RESULTS: A total of 22 patients underwent distal popliteal artery stent placement and 13 underwent tibioperoneal artery stent placement. Stent implantation was successfully performed in all patients. After stent placement, the primary cumulative patency rate for the study group at 6 months was 82%. The mean resting ankle-brachial index at baseline was 0.50 +/- 0.16 and significantly increased to 0.90 +/- 0.17 at 12-24 hours after intervention and 0.82 +/- 0.24 at latest follow-up (P < .001 for both). The sustained clinical improvement rate was 80% at the 6-month follow-up. The 6-month limb salvage rate regarding major amputation was 100%. The rate of major complications was 17%. CONCLUSIONS: Infrapopliteal application of the new nitinol stent is a safe, feasible, and effective method with good short-term patency rate in the treatment of severe LLC and chronic CLI.
Resumo:
The rare occurrence of angiosarcoma in postmastectomy upper-limb lymphedema with magnetic resonance (MR) imaging is discussed. Unfamiliarity with this aggressive vascular tumor and its harmless appearance often leads to delayed diagnosis. Angiosarcoma complicating chronic lymphedema may be low in signal intensity on T2-weighting and short tau inversion recovery (STIR) imaging reflecting the densely cellular, fibrous stroma, and sparsely vascularized tumor histology. Additional administration of intravenous contrast medium revealed significant enhancement of the tumorous lesions. Awareness of angiosarcoma and its MR imaging appearance in patients with chronic lymphedema may be a key to early diagnosis or allow at least inclusion in the differential diagnosis.
Resumo:
BACKGROUND/AIM: Because the pericapillary basement membrane in skeletal muscles of patients with chronic critical limb ischemia (CLI) is thickened, we determined the expression patterns of genes involved in collagen metabolism, using samples from 9 CLI patients, 4 patients with acute limb ischemia and 4 healthy controls. METHODS: Gene array analysis, quantitative RT-PCR and semiquantitative grading of immunohistochemical reactivity were performed to determine mRNA/cDNA and protein concentrations. RESULTS: In CLI patients compared to controls, cDNA levels of matrix metalloproteinase (MMP)-9 and MMP-19 were higher, collagen type IV chains A1 and A2, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-2 were similar and MMP-2 were lower. On the protein level, MMP-2, MMP-9, MMP-19 and TIMP-1 were more abundantly expressed. In skeletal muscles from patients with acute limb ischemia, cDNA and protein levels of MMP-9, MMP-19, collagen type IV chains, TIMP-1 and TIMP-2 were high. MMP-2 was elevated at the protein but decreased on the cDNA level. CONCLUSION: Expression of basement membrane components in skeletal muscles of CLI and acute limb ischemia patients is altered, possibly contributing to the pathogenesis of peripheral arterial disease.
Resumo:
BACKGROUND: Skeletal muscular counterpulsation (MCP) has been used as a new noninvasive technique for treatment of low cardiac output. The MCP method is based on ECG-triggered skeletal muscle stimulation. The purpose of the present study was to evaluate acute hemodynamic changes induced by MCP in the experimental animal. METHODS: Eight anaesthetized pigs (43+/-4 kg) were studied at rest and after IV â-blockade (10 mg propranolol) before and after MCP. Muscular counterpulsation was performed on both thighs using trains (75 ms duration) of multiple biphasic electrical impulses with a width of 1 ms and a frequency of 200 Hz at low (10 V) and high (30 V) amplitude. ECG-triggering was used to synchronize stimulation to a given time point. LV pressure-volume relations were determined using the conductance catheter. After baseline measurements, MCP was carried out for 10 minutes at low and high stimulation amplitude. The optimal time point for MCP was determined from LV pressure-volume loops using different stimulation time points during systole and diastole. Best results were observed during end-systole and, therefore, this time point was used for stimulation. RESULTS: Under control conditions, MCP was associated with a significant decrease in pulmonary vascular resistance (-18%), a decrease in systemic vascular resistance (-11%) and stroke work index (-4%), whereas cardiac index (+2%) and ejection fraction (+6%) increased slightly. Pressure-volume loops showed a leftward shift with a decrease in end-systolic volume. After â-blockade, cardiac function decreased (HR, MAP, EF, dP/dt max), but it improved with skeletal muscle stimulation (HR +10% and CI +17%, EF +5%). There was a significant decrease in pulmonary (-19%) and systemic vascular resistance (-29%). CONCLUSIONS: In the animal model, ECG-triggered skeletal muscular counterpulsation is associated with a significant improvement in cardiac function at baseline and after IV â-blockade. Thus, MCP represents a new, non-invasive technique which improves cardiac function by diastolic compression of the peripheral arteries and veins, with a decrease in systemic vascular resistance and increase in cardiac output.
Resumo:
Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).