162 resultados para intestinal parasites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is currently known about the lymphocyte populations in the normal and diseased canine gut. The aim of this study was thus the phenotypical and functional characterization of canine intestinal intraepithelial lymphocytes (IEL). IEL were isolated from full-thickness biopsies of 15 adult Swiss Beagle dogs (mean age 8.2 +/-2.8 years) and compared to mesenteric lymph node cells. The phenotypical characterization by multi-parameter flow cytometry revealed that canine IEL differ substantially from lymph node T cells, and consist of various unconventional lymphocyte subsets, unique to mucosal surfaces. These include gammasigma T cells, and CD4(-)CD8(-) and CD8alphaalpha(+) T cells. IEL populations in adult dogs were also compared to those isolated from neonatal Beagle dogs. Analysis revealed a high frequency of undifferentiated CD4(-)CD8(-) T cells in newborn dogs whereas mature CD4(+) and CD8(+) T cells predominate in adult dogs, indicating maturation of the intestinal immune system during development. As IEL in other species are thought to exhibit regulatory functions, we investigated the role of IEL on the activation-induced proliferation of lymph node T cells. While IEL alone did not show activation-induced proliferation, they significantly inhibited the proliferation of activated lymph node T cells in a cell number-dependent manner. These findings are the first to demonstrate that canine intestinal IEL have an immunoregulatory phenotype, which may contribute to the maintenance of intestinal immune homeostasis and may, therefore, be lost in canine chronic enteropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids (GC) are lipophilic hormones commonly used as therapeutics in acute and chronic inflammatory disorders such as inflammatory bowel disease due to their attributed anti-inflammatory and immunosuppressive actions. Although the adrenal glands are the major source of endogenous GC, there is increasing evidence for the production of extra-adrenal GC in the brain, thymus, skin, vasculature, and the intestine. However, the physiological relevance of extra-adrenal-produced GC remains still ambiguous. Therefore, this review attracts attention to discuss possible biological benefits of extra-adrenal-synthesized GC, especially focusing on the impact of locally synthesized GC in the regulation of intestinal immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the specific role of transmembrane tumor necrosis factor (tmTNF) in protective and pathological responses against the gastrointestinal helminth Trichinella spiralis, we compared the immune responses of TNF-alpha/lymphotoxin alpha (LTalpha)(-/-) mice expressing noncleavable transgenic tmTNF to those of TNF-alpha/LTalpha(-/-) and wild-type mice. The susceptibility of TNF-alpha/LTalpha(-/-) mice to T. spiralis infection was associated with impaired induction of a protective Th2 response and the lack of mucosal mastocytosis. Although tmTNF-expressing transgenic (tmTNF-tg) mice also had a reduced Th2 response, the mast cell response was greater than that observed in TNF-alpha/LTalpha(-/-) mice and was sufficient to induce the expulsion of the parasite. T. spiralis infection of tmTNF-tg mice resulted in significant intestinal pathology characterized by villus atrophy and crypt hyperplasia comparable to that induced following the infection of wild-type mice, while pathology in TNF-alpha/LTalpha(-/-) mice was significantly reduced. Our data thus indicate a role for tmTNF in host defense against gastrointestinal helminths and in the accompanying enteropathy. Furthermore, they also demonstrate that TNF-alpha is required for the induction of Th2 immune responses related to infection with gastrointestinal helminth parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal intraepithelial lymphocytes (IEL) are specialized subsets of T cells with distinct functional capacities. While some IEL subsets are circulating, others such as CD8alphaalpha TCRalphabeta IEL are believed to represent non-circulating resident T cell subsets [Sim, G.K., Intraepithelial lymphocytes and the immune system. Adv. Immunol., 1995. 58: 297-343.]. Current methods to obtain enriched preparations of intraepithelial lymphocytes are mostly based on Percoll density gradient or magnetic bead-based technologies [Lundqvist, C., et al., Isolation of functionally active intraepithelial lymphocytes and enterocytes from human small and large intestine. J. Immunol. Methods, 1992. 152(2): 253-263.]. However, these techniques are hampered by a generally low yield of isolated cells, and potential artifacts due to the interference of the isolation procedure with subsequent functional assays, in particular, when antibodies against cell surface markers are required. Here we describe a new method for obtaining relatively pure populations of intestinal IEL (55-75%) at a high yield (>85%) by elutriation centrifugation. This technique is equally suited for the isolation and enrichment of intraepithelial lymphocytes of both mouse and human origin. Time requirements for fractionating cell suspensions by elutriation centrifugation are comparable to Percoll-, or MACS-based isolation procedures. Hence, the substantially higher yield and the consistent robust enrichment for intraepithelial lymphocytes, together with the gentle treatment of the cells during elutriation that does not interfere with subsequent functional assays, are important aspects that are in favor of using this elegant technology to obtain unmanipulated, unbiased populations of intestinal intraepithelial lymphocytes, and, if desired, also of pure epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammals coexist with an extremely dense microbiota in the lower intestine. Despite the constant challenge of small numbers of microbes penetrating the intestinal surface epithelium, it is very unusual for these organisms to cause disease. In this review article, we present the different mucosal firewalls that contain and allow mutualism with the intestinal microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintenance of intestinal epithelial barrier function is of vital importance in preventing uncontrolled influx of antigens and the potentially ensuing inflammatory disorders. Intestinal intraepithelial lymphocytes (IEL) are in intimate contact with epithelial cells and may critically regulate the epithelial barrier integrity. While a preserving impact has been ascribed to the T-cell receptor (TCR)-gammadelta subset of IEL, IEL have also been shown to attenuate the barrier function. The present study sought to clarify the effects of IEL by specifically investigating the influence of the TCR-alphabeta CD8alphabeta and TCR-alphabeta CD8alphaalpha subsets of IEL on the intestinal epithelial barrier integrity. To this end, an in vitro coculture system of the murine intestinal crypt-derived cell-line mIC(cl2) and syngeneic ex vivo isolated IEL was employed. Epithelial integrity was assessed by analysis of transepithelial resistance (TER) and paracellular flux of fluorescein isothiocyanate-conjugated (FITC-) dextran. The TCR-alphabeta CD8alphaalpha IEL and resting TCR-alphabeta CD8alphabeta IEL did not affect TER of mIC(cl2) or flux of FITC-dextran. In contrast, activated TCR-alphabeta CD8alphabeta IEL clearly disrupted the integrity of the mIC(cl2) monolayer. No disrupting effect was seen with activated TCR-alphabeta CD8alphabeta IEL from interferon-gamma knockout mice. These findings demonstrate that secretion of interferon-gamma by activated TCR-alphabeta CD8alphabeta IEL is strictly required and also sufficient for disrupting the intestinal epithelial barrier function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzimidazoles were the first broad-spectrum anthelmintics and are still in use today against gastro-intestinal nematodes of ruminants such as Haemonchus contortus. Benzimidazoles block the polymerization of nematode microtubules. However, their efficacy is jeopardized by the spread of drug-resistant parasites that carry point mutations in beta-tubulin. Here we use a novel in vitro selection-in vivo propagation protocol to breed drug-resistant H. contortus. After 8 generations of selection with thiabendazole an in vitro resistance factor of 1000 was reached that was also relevant in vivo in infected sheep. The same procedure carried out with ivermectin produced only a moderate resistance phenotype that was not apparent in sheep. Cloning and sequencing of the beta-tubulin genes from the thiabendazole-resistant H. contortus mutants revealed all of the isotype 1 alleles, and part of the isotype 2 alleles, to carry the mutation glutamate(198) to alanine (E198A). An allele-specific PCR was developed, which may be helpful in monitoring the prevalence of alanine(198) encoding alleles in the beta-tubulin isotype 1 gene pool of H. contortus in the field.