143 resultados para glacial advance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last glacial period, several large abrupt climate fluctuations took place on the Greenland ice cap and elsewhere. Often these Dansgaard/Oeschger events are assumed to have been synchronous, and then used as tie-points to link chronologies between the proxy archives. However, if temporally separate events are lumped into one illusionary event, climatic interpretations of the tuned events will obviously be flawed. Here, we compare Dansgaard/Oeschger-type events in a well-dated record from south-eastern France with those in Greenland ice cores. Instead of assuming simultaneous climate events between both archives, we keep their age models independent. Even these well-dated archives possess large chronological uncertainties, that prevent us from inferring synchronous climate events at decadal to multi-centennial time scales. If possible, tuning of proxy archives should be avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The many different proxy records from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core allow for the first time a comparison of nine glacial terminations in great detail. Despite the fact that all terminations cover the transition from a glacial maximum into an interglacial, there are large differences between single terminations. For some terminations, Antarctic temperature increased only moderately, while for others, the amplitude of change at the termination was much larger. For the different terminations, the rate of change in temperature is more similar than the magnitude or duration of change. These temperature changes were accompanied by vast changes in dust and sea salt deposition all over Antarctica. Here we investigate the phasing between a South American dust proxy (non-sea-salt calcium flux, nssCa2+), a sea ice proxy (sea salt sodium flux, ssNa+) and a proxy for Antarctic temperature (deuterium, δD). In particular, we look into whether a similar sequence of events applies to all terminations, despite their different characteristics. All proxies are derived from the EPICA Dome C ice core, resulting in a relative dating uncertainty between the proxies of less than 20 years. At the start of the terminations, the temperature (δD) increase and dust (nssCa2+ flux) decrease start synchronously. The sea ice proxy (ssNa+ flux), however, only changes once the temperature has reached a particular threshold, approximately 5°C below present day temperatures (corresponding to a δD value of −420‰). This reflects to a large extent the limited sensitivity of the sea ice proxy during very cold periods with large sea ice extent. At terminations where this threshold is not reached (TVI, TVIII), ssNa+ flux shows no changes. Above this threshold, the sea ice proxy is closely coupled to the Antarctic temperature, and interglacial levels are reached at the same time for both ssNa+ and δD. On the other hand, once another threshold at approximately 2°C below present day temperature is passed (corresponding to a δD value of −402‰), nssCa2+ flux has reached interglacial levels and does not change any more, despite further warming. This threshold behaviour most likely results from a combination of changes to the threshold friction velocity for dust entrainment and to the distribution of surface wind speeds in the dust source region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Here we present a tephrostratigraphic record (core Co1202) recovered from the northeastern part of Lake Ohrid (Republics of Macedonia and Albania) reaching back to Marine Isotope Stage (MIS) 6. Overall ten horizons (OT0702-1 to OT0702-10) containing volcanic tephra have been recognised throughout the 14.94m long sediment succession. Four tephra layers were visible at macroscopic inspection (OT0702-4, OT0702-6, OT0702-8 and OT0702-9), while the remaining six are cryptotephras (OT0702-1, OT0702-2, OT0702-3, OT0702-5, OT0702-7 and OT0702-10) identified from peaks in K, Zr and Sr intensities, magnetic susceptibility measurements, and washing and sieving of the sediments. Glass shards of tephra layers and cryptotephras were analysed with respect to their major element composition, and correlated to explosive eruptions of Italian volcanoes. The stratigraphy and the major element composition of tephra layers and cryptotephras allowed the correlation of OT0702-1 to AD 472 or AD 512 eruptions of Somma-Vesuvius, OT0702-2 to the FL eruption of Mount Etna, OT0702-3 to the Mercato from Somma-Vesuvius, OT0702-4 to SMP1-e/Y-3 eruption from the Campi Flegrei caldera, OT0702-5 to the Codola eruption (Somma-Vesuvius or Campi Flegrei), OT0702-6 to the Campanian Ignimbrite/Y-5 from the Campi Flegrei caldera, OT0702- 7 to the Green Tuff/Y-6 eruption from Pantelleria Island, OT0702-8 to the X-5 eruption probably originating from the Campi Flegrei caldera, OT0702-9 to the X-6 eruption of generic Campanian origin, and OT0702-10 to the P-11 eruption from Pantelleria Island. The fairly well-known ages of these tephra layers and parent eruptions provide new data on the dispersal and deposition of these tephras and, furthermore, allow the establishment of a chronological framework for core Co1202 for a first interpretation of major sedimentological changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin’s hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of !- hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe’s oldest continental climate archives, Lake Ohrid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have identified relationships between landscape form, erosion and climate in regions of landscape rejuvenation, associated with increased denudation. Most of these landscapes are located in non-glaciated mountain ranges and are characterized by transient geomorphic features. The landscapes of the Swiss Alps are likewise in a transient geomorphic state as seen by multiple knickzones. In this mountain belt, the transient state has been related to erosional effects during the Late Glacial Maximum (LGM). Here, we focus on the catchment scale and categorize hillslopes based on erosional mechanisms, landscape form and landcover. We then explore relationships of these variables to precipitation and extent of LGM glaciers to disentangle modern versus palaeo controls on the modern shape of the Alpine landscape. We find that in grasslands, the downslope flux of material mainly involves unconsolidated material through hillslope creep, testifying a transport-limited erosional regime. Alternatively, strength-limited hillslopes, where erosion is driven by bedrock failure, are covered by forests and/or expose bedrock, and they display oversteepened hillslopes and channels. There, hillslope gradients and relief are more closely correlated with LGM ice occurrence than with precipitation or the erodibility of the underlying bedrock. We relate the spatial occurrence of the transport- and strength-limited process domains to the erosive effects of LGM glaciers. In particular, strength-limited, rock dominated basins are situated above the equilibrium line altitude (ELA) of the LGM, reflecting the ability of glaciers to scour the landscape beyond threshold slope conditions. In contrast, transport-limited, soil-mantled landscapes are common below the ELA. Hillslopes covered by forests occupy the elevations around the ELA and are constrained by the tree line. We conclude that the current erosional forces at work in the Central Alps are still responding to LGM glaciation, and that the modern climate has not yet impacted on the modern landscape.