80 resultados para epidemic polyarthritis
Resumo:
The recent Q fever epidemic in the Netherlands raised concerns about the potential risk of outbreaks in other European countries. In Switzerland, the prevalence of Q fever in animals and humans has not been studied in recent years. In this study, we describe the current situation with respect to Coxiella (C.) burnetii infections in small ruminants and humans in Switzerland, as a basis for future epidemiological investigations and public health risk assessments. Specific objectives of this cross-sectional study were to (i) estimate the seroprevalence of C. burnetii in sheep and goats, (ii) quantify the amount of bacteria shed during abortion and (iii) analyse temporal trends in human C. burnetii infections. The seroprevalence of C. burnetii in small ruminants was determined by commercial ELISA from a representative sample of 100 sheep flocks and 72 goat herds. Herd-level seroprevalence was 5.0% (95% CI: 1.6-11.3) for sheep and 11.1% (95% CI: 4.9-20.7) for goats. Animal-level seroprevalence was 1.8% (95% CI: 0.8-3.4) for sheep and 3.4% (95% CI: 1.7-6) for goats. The quantification of C. burnetii in 97 ovine and caprine abortion samples by real-time PCR indicated shedding of >10(4) bacteria/g in 13.4% of all samples tested. To our knowledge, this is the first study reporting C. burnetii quantities in a large number of small ruminant abortion samples. Annual human Q fever serology data were provided by five major Swiss laboratories. Overall, seroprevalence in humans ranged between 1.7% and 3.5% from 2007 to 2011, and no temporal trends were observed. Interestingly, the two laboratories with significantly higher seroprevalences are located in the regions with the largest goat populations as well as, for one laboratory, with the highest livestock density in Switzerland. However, a direct link between animal and human infection data could not be established in this study.
Resumo:
Systems for the identification and registration of cattle have gradually been receiving attention for use in syndromic surveillance, a relatively recent approach for the early detection of infectious disease outbreaks. Real or near real-time monitoring of deaths or stillbirths reported to these systems offer an opportunity to detect temporal or spatial clusters of increased mortality that could be caused by an infectious disease epidemic. In Switzerland, such data are recorded in the "Tierverkehrsdatenbank" (TVD). To investigate the potential of the Swiss TVD for syndromic surveillance, 3 years of data (2009-2011) were assessed in terms of data quality, including timeliness of reporting and completeness of geographic data. Two time-series consisting of reported on-farm deaths and stillbirths were retrospectively analysed to define and quantify the temporal patterns that result from non-health related factors. Geographic data were almost always present in the TVD data; often at different spatial scales. On-farm deaths were reported to the database by farmers in a timely fashion; stillbirths were less timely. Timeliness and geographic coverage are two important features of disease surveillance systems, highlighting the suitability of the TVD for use in a syndromic surveillance system. Both time series exhibited different temporal patterns that were associated with non-health related factors. To avoid false positive signals, these patterns need to be removed from the data or accounted for in some way before applying aberration detection algorithms in real-time. Evaluating mortality data reported to systems for the identification and registration of cattle is of value for comparing national data systems and as a first step towards a European-wide early detection system for emerging and re-emerging cattle diseases.
Resumo:
Occurring for the first time in 1986 in the United Kingdom, bovine spongiform encephalopathy (BSE), the so-called “mad-cow disease”, has had unprecedented consequences in veterinary public health. The implementation of drastic measures, including the ban of meat-and-bone-meal from livestock feed and the removal of specified risk materials from the food chain has eventually resulted in a significant decline of the epidemic. The disease was long thought to be caused by a single agent, but since the introduction of immunochemical diagnostic techniques, evidence of a phenotypic variation of BSE has emerged. Reviewing the literature available on the subject, this paper briefly summarizes the current knowledge about these atypical forms of BSE and discusses the consequences of their occurrence for disease control measures.
Resumo:
BACKGROUND Sexual transmission of Ebola virus disease (EVD) 6 months after onset of symptoms has been recently documented, and Ebola virus RNA has been detected in semen of survivors up to 9 months after onset of symptoms. As countries affected by the 2013-2015 epidemic in West Africa, by far the largest to date, are declared free of Ebola virus disease (EVD), it remains unclear what threat is posed by rare sexual transmission events that could arise from survivors. METHODOLOGY/PRINCIPAL FINDINGS We devised a compartmental mathematical model that includes sexual transmission from convalescent survivors: a SEICR (susceptible-exposed-infectious-convalescent-recovered) transmission model. We fitted the model to weekly incidence of EVD cases from the 2014-2015 epidemic in Sierra Leone. Sensitivity analyses and Monte Carlo simulations showed that a 0.1% per sex act transmission probability and a 3-month convalescent period (the two key unknown parameters of sexual transmission) create very few additional cases, but would extend the epidemic by 83 days [95% CI: 68-98 days] (p < 0.0001) on average. Strikingly, a 6-month convalescent period extended the average epidemic by 540 days (95% CI: 508-572 days), doubling the current length, despite an insignificant rise in the number of new cases generated. CONCLUSIONS/SIGNIFICANCE Our results show that reductions in the per sex act transmission probability via abstinence and condom use should reduce the number of sporadic sexual transmission events, but will not significantly reduce the epidemic size and may only minimally shorten the length of time the public health community must maintain response preparedness. While the number of infectious survivors is expected to greatly decline over the coming months, our results show that transmission events may still be expected for quite some time as each event results in a new potential cluster of non-sexual transmission. Precise measurement of the convalescent period is thus important for planning ongoing surveillance efforts.
Resumo:
BACKGROUND Survival after diagnosis is a fundamental concern in cancer epidemiology. In resource-rich settings, ambient clinical databases, municipal data and cancer registries make survival estimation in real-world populations relatively straightforward. In resource-poor settings, given the deficiencies in a variety of health-related data systems, it is less clear how well we can determine cancer survival from ambient data. METHODS We addressed this issue in sub-Saharan Africa for Kaposi's sarcoma (KS), a cancer for which incidence has exploded with the HIV epidemic but for which survival in the region may be changing with the recent advent of antiretroviral therapy (ART). From 33 primary care HIV Clinics in Kenya, Uganda, Malawi, Nigeria and Cameroon participating in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) Consortia in 2009-2012, we identified 1328 adults with newly diagnosed KS. Patients were evaluated from KS diagnosis until death, transfer to another facility or database closure. RESULTS Nominally, 22% of patients were estimated to be dead by 2 years, but this estimate was clouded by 45% cumulative lost to follow-up with unknown vital status by 2 years. After adjustment for site and CD4 count, age <30 years and male sex were independently associated with becoming lost. CONCLUSIONS In this community-based sample of patients diagnosed with KS in sub-Saharan Africa, almost half became lost to follow-up by 2 years. This precluded accurate estimation of survival. Until we either generally strengthen data systems or implement cancer-specific enhancements (e.g., tracking of the lost) in the region, insights from cancer epidemiology will be limited.