80 resultados para cortical reorganization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present topical review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human non-verbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be both voluntarily or emotionally controlled. Recent studies in non-human primates and humans revealed that the motor control of facial expressions has a distributed neural representation. At least 5 cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and, finally, the rostral and caudal cingulate cortex. The results of studies in humans and non-human primates suggest that the innervation of the face is bilaterally controlled for the upper part, and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, since they receive input from different structures of the limbic system. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced β band (βB) activity, which is suppressed by levodopa (LD) treatment, has been demonstrated within the basal ganglia (BG) of Parkinson's disease (PD) patients. However, some data suggest that Parkinsonian symptoms are not directly related to this brain frequency and therefore, its causative role remains questionable. A less explored phenomenon is the link between the γ band (γB) and PD phenomenology. Here, we monitored the development of the oscillatory activity during chronic LD depletion and LD treatment in Parkinsonian and levodopa-induced dyskinesia (LID) in rats. We found a significant and bilateral power increase in the high βB frequencies (20-30Hz) within the first 10days after 6-hydroxydopamine (6-OHDA) lesion, which was in accordance with a significant depletion of dopaminergic fibers in the striatum. We also observed a clear-cut γB increase during LD treatment. The development of LID was characterized by a slight increase in the cumulative power of βB accompanied by a large augmentation in the γB frequency (60-80Hz). This latter effect reached a plateau in the frontal cortex bilaterally and the left globus pallidus after the second week of LD treatment. Our data suggest that the βB parallels the emergence of Parkinsonian signs and can be taken as a predictive sign of DA depletion, matching TH-staining reduction. On the other hand, the γB is strictly correlated to the development of LID. LD treatment had an opposite effect on βB and γB, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To evaluate use of a surgical technique commonly used in humans for treatment of cervical spondylotic myelopathy (CSM) in dogs. DESIGN Prospective case series. ANIMALS Dogs with CSM (n=10). METHODS Dogs weighing >30 kg that had CSM at 1 vertebral articulation were eligible for inclusion. Dogs had vertebral column distraction/fusion performed using a cortical ring allograft, cancellous autograft, and a spinal locking plate. Dogs were evaluated temporally by repeat neurological examinations and by client perception of postsurgical outcome, determined by telephone interview. RESULTS Nine dogs survived the immediate postoperative period. Seven of 8 dogs had moderate to complete improvement without recurrence (mean follow-up, 2.48 years). The most common postsurgical complications were screw loosening (n=4) and plate shifting (2), neither of which required surgical revision. One dog had pseudoarthrosis that may have negatively impacted outcome. CONCLUSION Treatment of single level CSM in dogs with ring allograft and a spinal locking plate system may lead to successful outcomes. The major problems encountered with included cost of the implants and adjusting the system designed for humans to fit the vertebral column of a dog. CLINICAL RELEVANCE For dogs with CSM at a single level, the use of a spinal locking plate in combination with a cortical ring allograft can be an effective surgical treatment. Costs of the implants as well as anatomic differences in dogs make this type of surgery less appealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen’s d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.