78 resultados para core


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: With the International Classification of Functioning, Disability and Health (ICF), we can now rely on a globally agreed-upon framework and system for classifying the typical spectrum of problems in the functioning of persons given the environmental context in which they live. ICF Core Sets are subgroups of ICF items selected to capture those aspects of functioning that are most likely to be affected by sleep disorders. OBJECTIVE: The objective of this paper is to outline the developmental process for the ICF Core Sets for Sleep. METHODS: The ICF Core Sets for Sleep will be defined at an ICF Core Sets Consensus Conference, which will integrate evidence from preliminary studies, namely (a) a systematic literature review regarding the outcomes used in clinical trials and observational studies, (b) focus groups with people in different regions of the world who have sleep disorders, (c) an expert survey with the involvement of international clinical experts, and (d) a cross-sectional study of people with sleep disorders in different regions of the world. CONCLUSION: The ICF Core Sets for Sleep are being designed with the goal of providing useful standards for research, clinical practice and teaching. It is hypothesized that the ICF Core Sets for Sleep will stimulate research that leads to an improved understanding of functioning, disability, and health in sleep medicine. It is of further hope that such research will lead to interventions and accommodations that improve the restoration and maintenance of functioning and minimize disability among people with sleep disorders throughout the world.